
Computational Completeness Resulting from
Scattered Context Grammars Working Under

Various Derivation Modes

Alexander Meduna and Ondřej Soukup

Brno University of Technology, Faculty of Information Technology Centre of
Excellence, Božetěchova 1/2, 612 66 Brno, Czech Republic

meduna@fit.vutbr.cz, isoukup@fit.vutbr.cz

Abstract. This paper introduces and studies a whole variety of deriva-
tion modes in scattered context grammars. These grammars are con-
ceptualized just like classical scattered context grammars except that
during the applications of their rules, after erasing n nonterminals, they
can insert new substrings possibly at different positions than the original
occurrence of the erased nonterminal.

The paper concentrates its attention on investigating the generative
power of scattered context grammars working under these derivation
modes. It demonstrates that all of them are computationally complete–
that is, they characterize the family of recursively enumerable languages.

Keywords: scattered context grammars; alternative derivation modes; genera-
tive power; computational completeness.

1 Introduction

The present section informally sketches scattered context grammars working
under various new derivation modes and explains the reason why they are intro-
duced. This section also describes how the paper is organized.

At present, processing information in a discontinuous way represents a common
computational phenomenon. Indeed, consider a process p that deals with infor-
mation i. Typically, during a single computational step, p (1) reads n pieces
of information, x1 through xn, in i, (2) erases them, (3) generate n new pieces
of information, y1 through yn, and (4) inserts them into i possibly at different
positions than the original occurrence of x1 through xn, which was erased. To
explore computation like this systematically and rigorously, computer science
obviously needs formal models that reflect it in an adequate way.

Traditionally, formal language theory has always provided computer science with
language-defining models to explore various information processors mathemat-
ically, so it should do so for the purpose sketched above as well. However, the
classical versions of these models, such as grammars, work on words so they

erase and insert subwords at the same position, hence they can hardly serve as
appropriate models of this kind. Therefore, a proper formalization of processors
that work in the way described above needs an adaptation of some classical
well-known grammars so they reflect the above-described computation more ad-
equately. At the same time, any adaptation of this kind should conceptually
maintain the original structure of these models as much as possible so com-
puter science can quite naturally base its investigation upon these newly adapted
grammatical models by analogy with the standard approach based upon their
classical versions. Simply put, while keeping their structural conceptualization
unchanged, these grammatical models should work on words in newly introduced
ways, which more properly reflect the above-mentioned modern computation.

The present paper discusses this topic in terms of scattered context gram-
mars, which definitely represent important language-generating grammatical
models of computation. Indeed, the paper introduces a whole variety of deriva-
tion modes in scattered context grammars so they reflect the above-sketched
computation in a more adequate way than the standard derivation mode.

Recall that the notion of a scattered context grammar G represents a language-
generating rewriting system based upon an alphabet of symbols and a finite set
of rules. The alphabet of symbols is divided into two disjoint subalphabets—the
alphabet of terminal symbols and the alphabet of nonterminal symbols. In G, a
rule r is of the form

(A1, A2, . . . , An) → (x1, x2, . . . , xn),

for some positive integer n. On the left-hand side of r, the As are nonterminals.
On the right-hand side, the xs are strings. G can apply r to any string u of the
form

u = u0A1u1 . . . un−1Anun

where us are any strings. Notice that A1 through An are scattered throughout
u, but they occur in the order prescribed by the left-hand side of r. In essence,
G applies r to u so

(1) it deletes A1, A2, . . . , An in u, after which
(2) it inserts x1, x2, . . . , xn into the string resulting from the deletion (1).

By this application, G makes a derivation step from u to a string v of the form

v = v0x1v1 . . . vn−1xnvn

Notice that x1, x2, . . . , xn are inserted in the order prescribed by the right-hand
side of r. However, they are inserted in a scattered way—that is, in between the
inserted xs, some substrings vs occur.

This paper partially introduces the results of larger study, which is currently
being in progress and will be hopefully published soon. In this study, 9 deriva-
tion modes of scattered context grammars are defined, however, due to shortage
of space, only a few selected modes are presented here. For consistence, their

numbering is preserved. The chosen modes are mutually dual or complementary
to the others.

(1) Mode 1 requires that ui = vi for all i = 0, . . . , n in the above described
derivation step.

(3) Mode 3 obtains v from u so it changes u by performing (3a) through (3c),
described next:
(a) A1, A2, . . . , An are deleted;
(b) x1 and xn are inserted into u0 and un, respectively;
(c) x2 through xn−1 are inserted in between the newly inserted x1 and xn.

(5) In mode 5, v is obtained from u by (5a) through (5e), given next:
(a) A1, A2, . . . , An are deleted;
(b) a central ui is nondeterministically chosen, for some 0 ≤ i ≤ n;
(c) x1 and xn are inserted into u0 and un, respectively;
(d) xj is inserted between uj−2 and uj−1, for all 1 < j ≤ i;
(e) xk is inserted between uk and uk+1, for all i+ 1 ≤ k < n.

(7) Mode 7 obtains v from u performing the steps stated below:
(a) A1, A2, . . . , An are deleted;
(b) a central ui is nondeterministically chosen, for some 0 ≤ i ≤ n;
(c) xj is inserted between uj−2 and uj−1, for all 1 < j ≤ i;
(d) xk is inserted between uk and uk+1, for all i+ 1 ≤ k < n.

This paper is organized as follows. Section 2 gives all the necessary notation
and terminology to follow the rest of the paper. Then, Section 3 formally intro-
duces all the new derivation modes in scattered context grammars. After that,
Section 4 demonstrates that scattered context grammars working under any of
the newly introduced derivation modes are computationally complete–that is,
they characterize the family of recursively enumerable languages.

2 Preliminaries

We assume that the reader is familiar with formal language theory (see [1, 2]).
For a set W , card(W) denotes its cardinality. Let V be an alphabet (finite
nonempty set). V ∗ is the set of all strings over V. Algebraically, V ∗ represents
the free monoid generated by V under the operation of concatenation. The unit
of V ∗ is denoted by ε. Set V + = V ∗ − {ε}. Algebraically, V + is thus the free
semigroup generated by V under the operation of concatenation. For w ∈ V ∗,
|w| and reversal(w) denote the length of w and the reversal of w, respectively.
For L ⊆ V ∗, reversal(L) = {reversal(w) | w ∈ L}. The alphabet of w, denoted by
alph(w), is the set of symbols appearing in w. For v ∈ Σ and w ∈ Σ∗, occur(v, w)
equals the number of occurrences of v in w.

Let % be a relation over V ∗. The transitive and transitive and reflexive closure
of % are denoted %+ and %∗, respectively. Unless explicitly stated otherwise, we
write x % y instead (x, y) ∈ %.

The families of regular languages, context-free languages, and recursively
enumerable languages are denoted by REG, CF, and RE, respectively. Recall
that scattered context grammars characterize RE (see [3]).

3 Definitions

In this section, we define scattered context grammars and the following new
derivation modes in scattered context grammars. Then, we illustrate them by
examples.

Definition 1. A scattered context grammar (an SCG for short) is a quadruple

G = (V, T, P, S)

where

• V is an alphabet;
• T ⊂ V ;
• set N = V − T ;

• P ⊆
∞⋃

m=1

(
N1 ×N2 × · · · ×Nm × V ∗1 × V ∗2 × · · · × V ∗m

)
is finite, where each Nj = N , Vj = V , 1 ≤ j ≤ m;

• S ∈ N .

V , T and N are called the total alphabet, the terminal alphabet and the nonter-
minal alphabet, respectively. P is called the set of productions. Instead of

(A1, A2, . . . , An, x1, x2, . . . , xn) ∈ P

where Ai ∈ N , xi ∈ V ∗, for 1 ≤ i ≤ n, for some n ≥ 1, we write

(A1, A2, . . . , An)→ (x1, x2, . . . , xn)

S is the start symbol. ut

Definition 2. Let G = (V , T , P , S) be an SCG, and let % be a relation over
V ∗. Set

L(G, %) = {x | x ∈ T ∗, S %∗ x}

L(G, %) is said to be the language that G generates by %. Set

SC(%) = {L(G, %) | G is an SCG}

SC(%) is said to be the language family that SCGs generate by %. ut

Definition 3. Let G = (V , T , P , S) be an SCG. Next, we define the following
direct derivation relations 1⇒ through 9⇒ over V ∗.

First, let (A)→ (x) ∈ P and u = w1Aw2 ∈ V ∗. Then,

w1Aw2 i⇒ w1xw2, i ∈ {1, 2, . . . , 9}

Second, let (A1, A2, . . . , An)→ (x1, x2, . . . , xn) ∈ P and u = u0A1u1 . . . Anun,
z, z′, ui, vi, wi ∈ V ∗, for all 0 ≤ i ≤ n and 1 ≤ j ≤ n − 1, for some n ≥ 2, and
u0u1 . . . un = v0v1 . . . vn. Then,

(1) u0A1u1A2u2 . . . Anun 1⇒ u0x1u1x2v2 . . . xnun;
(3) u0A1u1A2u2 . . . Anun 3⇒ v0x1v1x2v2 . . . xnvn, where u0 = v0z, un = z′vn;
(5) u0u1A1u2A2 . . . ui−1AiuiAi+1ui+1 . . . Anunz 5⇒

u0x1u1x2u2 . . . xiui−1uiui+1xi+1 . . . unxnz;
(7) u0A1u2A2 . . . ui−1AiuiAi+1ui+1 . . . Anun 7⇒

u0x2u2 . . . xiui−1uiui+1xi+1 . . . un;
ut

To illustrate the above-introduced notation, let G = (V , T , P , S) be an
SCG; then, L(G, 5⇒) = {x | x ∈ T ∗, S 5⇒∗ x} and SC(5⇒) = {L(G, 5⇒) | G is
an SCG}. To give another example, SC(1⇒) denotes the family of all scattered
context languages.

4 Generative Power

In this section, for each defined derivation mode we investigate the generative
power of SCGs using this mode.

Lemma 1. Let L ⊆ Σ∗ be any recursively enumerable language. Then, L can
be represented as L = h(L1 ∩ L2), where h : T ∗ → Σ∗ is a morphism and L1

and L2 are two context-free languages.

For a proof, see [4].

4.1 Mode 1

We prove that SCGs with mode 1 derivations characterize the family of recur-
sively enumerable languages.

Theorem 1. [3] SC(1⇒) = RE.

Since SC(1⇒) ⊆ RE follows directly from the Church-Turing thesis, we only
have to prove the opposite inclusion.

Proof. Construction. Recall Lemma 1. By the closure properties of context-free
languages, there are context-free grammars G1 and G2 that generate L1 and
reversal(L2), respectively. More precisely, let Gi = (Vi, T, Pi, Si) for i = 1, 2. Let
T = {a1, . . . , an} and 0, 1, $, S /∈ (V1 ∪ V2 ∪ Σ) be the new symbols. Without
any loss of generality, assume that V1 ∩ V2 = ∅. Define the new morphisms

(1) c : ai 7→ 10i1;
(2) C1 : V1 ∪ T → V1 ∪Σ ∪ {0, 1}∗,{

A 7→ A, A ∈ V1,
a 7→ f(a), a ∈ T ;

(3) C2 : V2 ∪ T → V2 ∪ {0, 1}∗,{
A 7→ A, A ∈ V2,
a 7→ c(a), a ∈ T ;

(4) f : ai 7→ h(ai)c(ai);
(5) t : Σ ∪ {0, 1, $} → Σ,{

a 7→ a, a ∈ Σ,
A 7→ ε, A /∈ Σ;

(6) t′ : Σ ∪ {0, 1, $} → {0, 1},{
a 7→ a, a ∈ {0, 1},
A 7→ ε, A /∈ {0, 1}.

Finally, let G = (V,Σ, P, S) be SCG, with V = V1 ∪ V2 ∪ {S, 0, 1, $} and P
containing the rules

(1) (S)→ ($S11111S2$);
(2) (A)→ (Ci(w)), for all A→ w ∈ Pi, where i = 1, 2;
(3) ($, a, a, $)→ (ε, $, $, ε), for a = 0, 1;
(4) ($)→ (ε).

Claim 1. L(G, 1⇒) = L.

Proof. Basic idea. First the starting rule from (1) is applied. The starting non-
terminals S1 and S2 are inserted into the current sentential form. Then, by using
the rules from (2) G simulates derivations in both G1 and G2 and generates the
sentential form w = $w11111w2$.

Suppose S1⇒∗ w, where alph(w) ∩ (V1 ∪ V2) = ∅. If t′(w1) = reversal(w2),
then t(w1) = h(v), where v ∈ L1 ∩ L2 and h(v) ∈ L. In other words, w repre-
sents a successful derivation of both G1 and G2, where the both grammars have
generated the same sentence v, therefore G must generate the sentence h(v).

The rules from (3) serve to check, whether the simulated grammars have
generated the identical words. Binary codings of the generated words are erased
while checking the equality. Each time the leftmost and the rightmost symbols
are erased, otherwise some symbol is skipped. If the codings do not match, some
0 or 1 cannot be erased and no terminal string can be generated.

Finally, the symbols $ are erased with the rule from (4), and if G1, G2,
respectively, generated the same sentence and both codings were successfully
erased, then the G has generated the terminal sentence h(v). ut

For a rigorous proof, see [3]. Since L is an arbitrary recursively enumerable
language, by Claim 1 the proof of Theorem 1 is completed. ut

4.2 Mode 3

In this section, we prove the family of languages generated by SCGs with mode
3 derivations coincides with the family of recursively enumerable languages.

Theorem 2. SC(3⇒) = RE.

Since SC(3⇒) ⊆ RE follows directly from the Church-Turing thesis, we only
have to prove the opposite inclusion.

Proof. Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 1.
Next, we modify G to a new SCG G′ such that L(G, 1⇒) = L(G′, 1⇒). Finally,
we prove L(G′, 3⇒) = L(G′, 1⇒).

Construction. Let G′ = {V,Σ, P ′, S} be SCG with P ′ containing

(1) (S)→ (S111$$11S2);
(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;
(3) (a, $, $, a)→ ($, ε, ε, $), for a = 0, 1;
(4) ($)→ (ε).

We establish the proof of Theorem 2 by the following two claims.

Claim 2. L(G′, 1⇒) = L(G, 1⇒).

Proof. G′ is closely related to G, only the rules from (1) and (3) are slightly
modified. As a result the correspondence of the sentences generated by the sim-
ulated G1, G2, respectively, is not checked in the direction from the outermost
to the central symbols but from the central to the outermost symbols. Again,
if the current two symbols do not match, they can not be erased both and the
derivation blocks. ut

Claim 3. L(G′, 3⇒) = L(G′, 1⇒).

Proof. Without any loss of generality, we can suppose the rules from (1) and (2)
are used only before the first usage of the rule from (3). The context-free rules
work unchanged with mode 3 derivations. Then, for every derivation

S 1⇒∗ w = w111$$11w2

generated only by the rules from (1) and (2), where alph(w) ∩ (V1 ∪ V2) = ∅,
there is the identical derivation

S 3⇒∗ w

and vice versa. Since
w 1⇒∗ w′, w′ ∈ Σ∗

if and only in t′(w1) = reversal(w2), we can complete the proof of the previous
claim by the following one.

Claim 4. Let the sentential form w be generated only by the rules from (1) and
(2). Without any loss of generality, suppose alph(w) ∩ (V1 ∪ V2) = ∅. Consider

S 3⇒∗ w = w111$$11w2

Then, w 3⇒∗ w′, where w′ ∈ Σ∗, if and only if t′(w1) = reversal(w2).

For better readability, in the next proof we omit all symbols of w1 from Σ—
we consider only nonterminal symbols, which are to be erased.

Basic idea. The rules from (3) are the only with 0s and 1s on their left hand
sides. These symbols are simultaneously erasing to the left and to the right of $s
checking the equality in reverse. While proceeding from the center to the edges,
when there is any symbol skipped, which is remaining between $s, there is no
way, how to erase it, and no terminal string can be generated.

Consider the mode 3 derivations. Even when the symbols are erasing one
after another from the center to the left and right, the derivation mode can
potentially shift left one $ to the left and right one $ to the right skipping some
symbols. Also in this case the symbols between $s can not be erased anymore.

Proof. If. Recall

w = 10m1110m21 . . . 10mo111$$1110mo1 . . . 10m2110m11

Suppose the check works properly not skipping any symbol. Then

w 3⇒∗ w′ = $$

and twice applying the rule from (4) the derivation finishes. ut

Proof. Only if. If w1 6= reversal(w2), though the check works properly,

w 1⇒∗ w′ = w′1x$$x′w′2

and x, x′ ∈ {0, 1}, x 6= x′. Continuing the check with application of the rules
from (3) will definitely skip x or x′. Consequently, no terminal string can be
generated.

We showed, that G′ can generate the terminal string from the sentence form
w, if only if t′(w1) = reversal(w2), and the claim holds. ut

Since S 1⇒∗ w, w ∈ Σ∗, if and only if S 3⇒∗ w, Claim 3 holds. ut

We proved L(G, 1⇒) = L, L(G′, 1⇒) = L(G, 1⇒) and L(G′, 3⇒) = L(G′, 1⇒),
therefore L(G′, 3⇒) = L holds. Since L is an arbitrary recursively enumerable
language, the proof of Theorem 2 is completed. ut

4.3 Mode 5

This section investigates mode 5 derivations. It proves the family of languages
SCGs with mode 5 derivations generates corresponds to the family of recursively
enumerable languages.

Theorem 3. SC(5⇒) = RE.

Since SC(5⇒) ⊆ RE follows directly from the Church-Turing thesis, we only
have to prove the opposite inclusion.

Proof. Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 1.
Next, we modify G to a new SCG G′ so L(G, 1⇒) = L(G′, 5⇒).

Construction. Introduce four new symbols—D,E,F and ◦. Set N = {D,E,F ,◦}.
Let G′ = (V ′, Σ, P ′, S) be SCG, with V ′ = V ∪N and P ′ containing the rules

(1) (S)→ ($S11111S2$ ◦ E ◦ F);
(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;
(3) (F)→ (FF);
(4) ($, a, a, $, E, F)→ (ε, ε, $, $, ε,D), for a = 0, 1;
(5) (◦, D, ◦)→ (ε, ◦E◦, ε);
(6) ($)→ (ε), (E)→ (ε), (◦)→ (ε).

Claim 5. L(G, 1⇒) = L(G′, 5⇒).

Proof. Context-free rules are not influenced by the derivation mode. The rule
from (3) must generate precisely as many F s as the number of applications of
the rule from (4). Context-sensitive rules of G′ correspond to context-sensitive
rules of G, except the special rule from (5). We show, the construction of G′

forces context-sensitive rules to work exactly in the same way as the rules of G
do.

Every application of the rule from (4) must be followed by the application of
the rule from (5), to rewrite D back to E, which requires the symbol D between
two ◦s. It ensures the previous usage of context-sensitive rule selected the center
to the right of the rightmost affected nonterminal and all right hand side strings
changed their positions with the more left ones. The leftmost right hand side
string is then shifted randomly to the left, but it is always ε. The derivation
mode has no influence on the rule from (5).

From the construction of G′, it works exactly in the same way as G does. ut

L(G, 1⇒) = L(G′, 5⇒) and L(G, 1⇒) = L, therefore L(G′, 5⇒) = L. Since
L is an arbitrary recursively enumerable language, the proof of Theorem 3 is
completed. ut

4.4 Mode 7

This section investigates mode 7 derivations and proves SCGs with this mode
derivations are Turing-complete.

Theorem 4. SC(7⇒) = RE.

Since SC(7⇒) ⊆ RE follows directly from the Church-Turing thesis, we only
have to prove the opposite inclusion.

Proof. Let G = (V,Σ, P, S) be the SCG constructed in the proof of Theorem 1.
Next, we modify G to a new SCG G′ so L(G, 1⇒) = L(G′, 7⇒).

Construction. Introduce four new symbols—E,F ,G and |. Set N = {E,F ,G,|}.
Let G′ = (V ′, Σ, P ′, S) be SCG, with V ′ = V ∪N and P ′ containing the rules

(1) (S)→ (FGS111$|$11S2);

(2) (A)→ (Ci(w)) for A→ w ∈ Pi, where i = 1, 2;

(3) (F)→ (FF);

(4) (a, $, $, a)→ (ε, E,E, ε), for a = 0, 1;

(5) (F,G,E, |, E)→ (G, $, |, $, ε);
(6) ($)→ (ε), (G)→ (ε), (|)→ (ε).

Claim 6. L(G, 1⇒) = L(G′, 7⇒).

Proof. The behaviour of context-free rules remains unchanged under mode 7
derivations. Since the rules of G′ simulating the derivations of G1, G2, respec-
tively, are identical to the ones of G simulating both grammars, for every deriva-
tion of G

S 1⇒∗ $w11111w2$ = w

where w was generated only using the rules from (1) and(2) and alph(w)∩ (V1 ∪
V2) = ∅, there is

S 7⇒∗ FGw111$|$11w2 = w′

in G′, generated by the corresponding rules from (1) and (2), and vice versa.
Without any loss of generality, we can consider such a sentence form in every
successful derivation. Additionally, in G

w 1⇒∗ v, v ∈ Σ∗

if and only if t′(w1) = reversal(w2). Note, then v = t(w). Therefore, we have to
prove

w′ 4⇒∗ v′, v′ ∈ Σ∗

if and only if t′(w1) = reversal(w2). Then obviously v′ = v and we can complete
the proof by the following claim.

Claim 7. In G′, for
S 7⇒∗ w = F iGw1$|$w2E

where w was generated only using the rules from (1) through (3) and alph(w)∩
(V1 ∪ V2) = ∅. Then

w 7⇒∗ w′

where w′ ∈ Σ∗, if and only if t′(w1) = reversal(w2), for some i ≥ 1.

The new rule from (3) may potentially arbitrarily multiply the number of
F s to the left. Then, F s are erasing using the rule from (5). Thus, without any
loss of generality, suppose i equals the number of the future usages of the rule
from (5).

For better readability, in the next proof we omit all symbols of w1 from
Σ—we consider only nonterminal symbols, which are to be erased.

Proof. If. Suppose w1 = reversal(w2), then w 7⇒∗ ε. We prove this by the
induction on the length of w1, w2, where |w1| = |w2| = k. Then, obviously i = k.
By the construction of G′, the least k equals 2, but we prove the claim for all
k ≥ 0.

Basis. Let k = 0. Then
w = G$|$

By the rules from (6)
G$|$ 7⇒∗ ε

and the basis holds.

Induction Hypothesis. Suppose there exists k ≥ 0 such that the claim holds for all
m, where

w = FmGw1$|$w2, |w1| = |w2| = m, 0 ≤ m ≤ k

Induction Step. Consider G′ generates w, where

w = F k+1Gw1$|$w2, |w1| = |w2| = k + 1

Since w1 = reversal(w2) and |w1| = |w2| = k + 1, w1 = w′1a, w2 = aw′2.
The symbols a can be erased by application of the rules from (4) and (5)

under several conditions. First, when the rule from (4) is applied, the center
for interchanging right hand side strings must be chosen between the two $s,
otherwise both Es appear on the same side of the symbol | and the rule from
(5) is not applicable. Next, no 0 or 1 may be skipped, while proceeding in the
direction from center to the edges. Finally, when the rule from (5) is applied,
the center must be chosen to the left of F , otherwise G is erased and the future
application of this rule is excluded.

F k+1Gw′1a$|$aw′2 7⇒ F k+1Gw′1D|Dw′2 7⇒ F kGw′1$|$w′2 = w′

By induction hypothesis w′7⇒∗ ε, which completes the proof.

Only if. Suppose w1 6= reversal(w2), then, there is no w′, where w 7⇒∗ w′ and
w′ = ε.

Since w1 6= reversal(w2), w1 = uav, w2 = va′u′ and a 6= a′. Suppose both vs
are correctly erased and no symbol is skipped producing the sentential form

F iGua$|$a′u′

Next the rule from (4) can be applied to erase innermost 0s or 1s. However, since
a 6= a′, even if the center if chosen properly between the two $s, there is 0 or 1
between inserted Es and thus unable to be erased, which completes the proof.

We showed, that G′ can generate the terminal string from the sentence form
w, if only if t′(w1) = reversal(w2), and the claim holds. ut

We proved S 1⇒∗ w, w ∈ Σ∗, in G, if and only if S 7⇒∗ w in G′, hence
L(G, 1⇒) = L(G′, 7⇒) and the claim holds. ut

Since L(G, 1⇒) = L(G′, 7⇒), L(G, 1⇒) = L and L is an arbitrary recursively
enumerable language, the proof of Theorem 4 is completed. ut

5 Conclusion

The modern trend in information processing is parallel access to typically dis-
tributed data, however, traditionally, in formal languages theory automata and

grammars process information in continuous and often sequential way. Such mod-
els are not entirely suitable for the study of modern approaches in the data pro-
cessing, where the data are frequently simultaneously read from and written to
the different parts of the memory space, sometimes physically separated.

For modelling the parallel data processing the usage of the scattered con-
text grammars that have been investigated already in a long series of studies,
which brought a number of important results—especially their computational
completeness—, seems to be appropriate. Though, even the scattered context
grammars are not a perfect model of the modern data processing and the whole
variety of suitable modifications can be established.

However, the aim of this study was not the attempt to modify the model
itself, only the way it generates the terminal string. The main motivation was
to break the usual approach of the rewriting and try to divide the process into
deletion and insertion, which may not necessarily take place at the same part of
the sentence form. The mutual relation of these two now separated actions is then
defined by the constraints resulting from the definition of the used derivation
mode. Despite the fact that the additional nondeterminism is brought into the
computational process, it has been proven that the generative power of the model
is not reduced and it is still as powerful as Turing machines.

Acknowledgments

This work was supported by the following grants: BUT FIT FIT-S-14-2299,
MŠMT CZ1.1.00/02.0070, and TAČR TE01010415.

References

1. Salomaa, A.: Formal Languages. Academic Press, London (1973)
2. Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Languages, Vol. 1:

Word, Language, Grammar. Springer, New York (1997)
3. Fernau, H., Meduna, A.: A simultaneous reduction of several measures of de-

scriptional complexity in scattered context grammars. Information Processing
Letters 86(5) (2003) 235–240

4. Harrison, M.A.: Introduction to Formal Language Theory. 1st edn. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1978)

5. Meduna, A., Zemek, P.: Regulated Grammars and Their Transformations.
Faculty of Information Technology, Brno University of Technology (2010)

6. Meduna, A., Techet, J.: Scattered Context Grammars and their Applications.
WIT Press (2010) ISBN: 978-1-84564-426-0.

