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A convergence class is introduced on every object of a given category by using certain 
generalized nets for expressing the convergence. The obtained concrete category is 
then investigated whose objects are the pairs consisting of objects of the original 
category and convergence classes on them and whose morphisms are the morphisms 
of the original category that preserve the convergence. We define, in a natural way, 
separation and compactness of objects of the concrete category under investigation 
and study their behavior.
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1. Introduction

The study of topological structures on (objects of) categories represents an important branch of categori-
cal topology. It was initiated by D. Dikranjan and E. Giuli [4] who introduced and studied closure operators 
on categories. These operators were then investigated by a number of authors (see [6] and the references 
therein) who contributed to the development of the theory of categorical closure operators. In particular, 
some of these authors studied separation and compactness with respect to a categorical closure operator 
– see e.g. [2,3,5]. Later on, some more topological structures on categories were introduced and studied 
including convergence structures [16], neighborhood structures [10], and interior operators [20].

In the classical approach to the study of topological structures on (objects of) categories, categories with 
a given topological structure are considered and investigated. This approach is used also in [16] for the 
study of convergence on categories and related separation and compactness. Quite a different approach was 
used in [13–15] where concrete categories over Set were studied obtained by providing every set with a 
convergence and introducing continuous, i.e., convergence preserving maps. In the present paper, we use the 
approach of [13–15] but, instead of Set, an arbitrary category is considered (with no topological structure 
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in general) and a convergence is newly defined for each of its objects. We obtain a concrete category over 
the original one whose objects are pairs consisting of objects of the original category and convergence on 
them and whose morphisms are the morphisms of the original category that preserve the convergence. Basic 
properties of the concrete category are investigated in [17]. In the present paper, we focus on the study 
of naturally defined convergence separation and compactness of objects of the concrete category obtained. 
We will show that the separation and compactness behave analogously to and even better than the usual 
topological separation and compactness.

2. Preliminaries

For the convenience of the reader, we repeat all the relevant definitions from [17], which makes our paper 
self-contained. For the categorical terminology used see [1] and [12].

Throughout the paper, we consider a category K with a terminal object 1K. Further, we assume there is 
given a non-empty category S and a functor F : S → K.

Definition 1. For an arbitrary K-object K, by an F-net in K we understand any object of the comma 
category (F ↓ K), i.e., any object F-over K. Given a pair 〈S, f〉, 〈T, g〉 of F-nets in K, 〈S, f〉 is said to be 
a subnet of 〈T, g〉 provided that there is a morphism from 〈S, f〉 to 〈T, g〉 in (F ↓ K).

Example 1. Here and also in the other examples, we will denote by Dir the category of directed sets and 
cofinal maps and by ω the subcategory of Dir whose only object is the least infinite ordinal ω and whose 
morphisms are the isotone injections.

(1) Let K = Set, S = Dir and let F : Dir → Set be the forgetful functor. Then F-nets in a K-object X
and their subnets are the usual nets in the set X and their subnets (see e.g. [11]). If we replace Dir by ω, 
then we get the usual sequences and subsequences.

(2) Let S be a construct and let F : S → Set be the forgetful functor. Then F-nets in a K-object X and 
their subnets coincide with S-nets in X and their subnets discussed in [13–15].

(3) The B-nets in a set X and their B-subnets from [21] are nothing but F-nets in X and their subnets 
where B is a subconstruct of Dir and F : B → Set is the forgetful functor.

(4) Let K = Set, let S be the category of compact Hausdorff topological spaces (and continuous maps) 
and let F : S → Set be the forgetful functor. A quasi-topology [18] on a set X is nothing but a collection 
(Q(S, X))S∈S where, for each S-object S, Q(S, X) is a set of F-nets 〈S, f〉 in X satisfying certain given 
axioms.

For any K-object K, we denote by ∼= the usual equivalence between subobjects of K (i.e., monomorphisms 
in K with the codomain K) and by K∗ the class of all (∼=-equivalence classes of) points of K, i.e., subobjects 
of K whose domains are terminal objects.

Definition 2. Let K be a K-object. A subclass π ⊆ Ob(F ↓ K) ×K∗ is said to be a convergence class on K
if the following two conditions are satisfied:

(i) If 〈S, f〉 is an F-net in K such that f factors through a point x ∈ K∗ (i.e., f is a constant morphism), 
then (〈S, f〉, x) ∈ π.

(ii) If (〈S, f〉, x) ∈ π, then (〈T, g〉, x) ∈ π for every subnet 〈T, g〉 of 〈S, f〉.

If π is a convergence class on a K-object K, then we write 〈S, f〉 π→ x instead of (〈S, f〉, x) ∈ π and say 
that 〈S, f〉 converges to x with respect to π. An F-net 〈S, f〉 in K is said to be convergent w.r.t. π if there 
is a point x ∈ K∗ with 〈S, f〉 π→ x.
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Let K, L be K-objects and let π and ρ be convergence classes on K and L, respectively. A K-morphism 
ϕ : K → L is said to be continuous (w.r.t. π and ρ) if 〈S, f〉 π→ x implies 〈S, ϕ ◦ f〉 ρ→ ϕ ◦ x. We denote 
by ConvF the category with objects the pairs (K, π) where K is a K-object and π is a convergence class 
on K and with morphisms ϕ : (K, π) → (L, ρ) the continuous (w.r.t. π and ρ) K-morphisms ϕ : K → L. 
Note that the objects of ConvF may not form a class so that, according to the terminology introduced in 
[1], ConvF is a so-called quasicategory rather then a category. Since all the categorical concepts used may 
naturally be extended to quasicategories, we will avoid using the concept of a quasicategory here, i.e., we 
will call the quasicategory ConvF simply a category. Similarly, (full) subquasicategories of ConvF will be 
called (full) subcategories of ConvF or briefly categories.

We denote by LimF the full subcategory of ConvF whose objects are the pairs (K, π) where K is a 
K-object and π is a convergence class on K satisfying the following (Urysohn) axiom:

For any F-net 〈S, f〉 in K and any point x ∈ K∗, 〈S, f〉 π→ x whenever every subnet of 〈S, f〉 has a 
subnet converging to x (w.r.t. π).

It may easily be seen that the categories ConvF and LimF are topological (over K) and LimF is concretely 
reflective in ConvF . In [17], sufficient conditions are given under which these categories are cartesian closed.

Definition 3. A ConvF -object (K, π) is said to be

(a) separated if, for every F-net 〈S, f〉 in K, from 〈S, f〉 π→ x and 〈S, f〉 π→ y it follows that x ∼= y,
(b) compact if every F-net in K has a subnet which is convergent w.r.t. π.

We denote by HConvF and HLimF the full subcategory of ConvF whose objects are the separated 
objects of ConvF and LimF , respectively.

Example 2. (1) Let S = ω and let F : ω → Set be the forgetful functor. Then the objects of HConvF and 
HLimF are nothing but the well-known Fréchet L-spaces and L∗-spaces, respectively (see [9] and [19]). The 
convergence spaces studied in [7] are nothing but the compact objects of HLimF .

(2) In [8], the construct of L∗-spaces and continuous maps is studied where L∗-spaces are obtained from 
L∗-spaces by replacing sequences with the usual nets. Thus, this construct coincides with the category LimF
where F : Dir → Set is the forgetful functor.

(3) The B-convergence structures studied in [20] for special subcategories B of Dir are nothing but the 
objects of ConvF where F : B → Set is the forgetful functor

(4) Let S = Dir or S = ω and let F : S → Set be the forgetful functor. Let (X, O) be a topological space 
(given by the set O of open subsets). For an F-net 〈S, f〉 in X, put 〈S, f〉 π→ x if and only if, for every A ∈ O
with x ∈ A, there exists sA ∈ FS such that f(s) ∈ A for every s ∈ FS with s ≥ sA. Then (X, π) is an object 
of LimF – we say that the convergence class π is associated with the topology O. If (X, O) is separated or 
compact, respectively, in the usual topological sense, then it is a separated or compact, respectively, object 
of LimF (and vice versa if S = Dir).

(5) If S is a construct and F : S → Set the forgetful functor, then ConvF and LimF coincide with the 
categories ConvS and LimS , respectively, studied in [13–15].

Definition 4. An embedding ϕ : (K, π) → (L, ρ) in ConvF (i.e., an initial morphism with a monomorphic 
underlying K-morphism ϕ : K → L) is said to be closed if from 〈S, f〉 ρ→ x where f factors through ϕ it 
follows that also x factors through ϕ.

Clearly, every isomorphism in ConvF is closed and closed embeddings in ConvF are closed under com-
position.
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Example 3. Let F : Dir → Set or F : ω → Set be the forgetful functor. Let (X, O), (Y, P) be topological 
spaces and let ϕ : (X, π) → (Y, ρ) be an embedding in LimF where π is associated with the topology O and 
ρ is associated with the topology P. Then ϕ is closed if and only if ϕ(X) is a closed or sequentially closed 
subset, respectively, of the topological space (Y, ρ).

Let K have finite products and let (Ki, πi), i = 1, 2, be ConvK-objects. We denote by π1 × π2 the initial 
structure of the source K1 ×K2 → (Ki, πi), i = 1, 2 (with respect to the forgetful functor K → ConvK, so 

that (K1 ×K2, π1 × π2) is the concrete product of (K1, π1) and (K2, π2)). Clearly, we have 〈S, f〉 π1×π2→ x if 
and only if 〈S, pr i ◦ f〉 

πi→ pr i ◦ x for i = 1, 2 (where pr i denotes the i-th projection, i = 1, 2).

Theorem 1. Let K have finite products. A ConvF -object (K, π) is separated if and only if the diagonal 
morphism Δ : (K, π) → (K, π) × (K, π) is closed.

Proof. Let (K, π) be separated, let 〈S, f〉 be an F-net in K×K with 〈S, f〉 π×π→ x, and let f factor through 
Δ, say f = Δ ◦ h. Then 〈S, pr i ◦ Δ ◦ h〉 πK→ pr i ◦ x for i = 1, 2. Since pr1 ◦ Δ = pr2 ◦ Δ = idK , we have 
pr1 ◦ Δ ◦ h = pr2 ◦ Δ ◦ h = h. Hence, pr1 ◦ x ∼= pr2 ◦ x, which means pr1 ◦ x = pr2 ◦ x. Consequently, 
x = Δ ◦ pr1 ◦ x(= Δ ◦ pr2 ◦ x). Therefore x factors through Δ, i.e., Δ is π-closed.

Conversely, let Δ be π-closed and let 〈S, f〉 be an F-net in K with 〈S, f〉 πK→ x and 〈S, f〉 πK→ y. Then 
〈S, [f, f ]〉 πK×K→ z where pr1 ◦ z = x and pr2 ◦ z = y. As [f, f ] = Δ ◦ f , z factors through Δ, i.e., there 
exists a point t ∈ K∗ with z = Δ ◦ t. Consequently, x = pr1 ◦ Δ ◦ t = pr2 ◦ Δ ◦ t = y. Therefore, K is 
π-separated. �
Definition 5. A morphism ϕ : (K, π) → (L, ρ) in ConvF is said to be sublifting if, for every F-net 〈S, f〉 in 
K, 〈S, ϕ ◦ f〉 ρ→ y implies that there exists a subnet 〈T, g〉 of 〈S, f〉 such that 〈T, g〉 π→ x where x ∈ K∗ is a 
point with y ∼= ϕ ◦ x.

Clearly, every isomorphism in ConvK is sublifting and sublifting ConvF -morphisms are closed under 
composition.

The following assertion is evident:

Proposition 1. If an embedding ϕ : (K, π) → (L, ρ) in ConvF is sublifting, then it is closed.

Example 4. Let F : Dir → Set be the forgetful functor, let (X, O) and (Y, P) be topological spaces and 
let (X, π) and (Y, ρ) be the objects of LimF where π and ρ are the convergence classes associated with the 
topologies O and P, respectively. A continuous map ϕ : (X, O) → (Y, P) is closed (in the usual topological 
sense) if ϕ : (X, π) → (Y, ρ) is sublifting.

3. Compactness

Theorem 2. Let ϕ : (K, π) → (L, ρ) be a closed embedding in ConvF . If (L, ρ) is compact, then so is (K, π).

Proof. Let (L, ρ) be compact and let 〈S, f〉 be an F-net in K. Then 〈S, ϕ ◦ f〉 is an F-net in L, thus 
there exists a subnet 〈T, g〉 of 〈S, ϕ ◦ f〉 and a point y ∈ L∗ such that 〈T, g〉 ρ→ y. Consequently, there is a 
K-morphism h : T → S with g = ϕ ◦ f ◦h. Since ϕ is closed, there is a point x ∈ K with y = ϕ ◦x. We have 
〈T, f ◦ h〉 π→ x because ϕ is an embedding. As 〈T, f ◦ h〉 is a subnet of 〈S, f〉, the proof is complete. �
Theorem 3. Let K have finite products. If (K, π) is compact, then the projection pL : (K, π) ×(L, ρ) → (L, ρ)
is sublifting for every object (L, ρ) of ConvF .
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Proof. Let (K, π) be compact and let 〈S, f〉 be an F-net in (K, π) ×(L, ρ) such that 〈S, prL◦f〉 
ρ→ y (y ∈ L∗

a point). Then there exists a subnet 〈T, prK ◦ f ◦ ϕ〉 of 〈S, prK ◦ f〉 such that 〈T, prK ◦ f ◦ ϕ〉 π→ x (where 

x ∈ K∗ is a point). Since 〈T, prL ◦ g ◦ ϕ〉 ρ→ y, we have 〈T, f ◦ ϕ〉 π×ρ→ z where z ∈ (K × L)∗ is the point 
with x = prK ◦ z and y = prL ◦ z. As 〈T, f ◦ ϕ〉 is a subnet of 〈S, f〉, the proof is complete. �
Theorem 4. Let ϕ : (K, π) → (L, ρ) be a ConvF -morphism. If (K, π) is compact and (L, ρ) is separated, 
then ϕ is sublifting.

Proof. Let (K, π) be compact and (L, ρ) be separated. Let 〈S, f〉 be an F-net in K with 〈S, ϕ ◦ f〉 ρ→ y. 
Then there is a subnet 〈T, f ◦ s〉 of 〈S, f〉 such that 〈T, f ◦ s〉 π→ x (where x ∈ K∗ is a point). Since ϕ is 
continuous, we have 〈T, ϕ ◦f ◦s〉 ρ→ ϕ ◦x. But 〈T, ϕ ◦f ◦s〉 ρ→ y because 〈T, ϕ ◦f ◦s〉 is a subnet of 〈S, ϕ ◦s〉. 
Hence, y ∼= ϕ ◦ x because (L, ρ) is separated. �

Proposition 1 and Theorem 4 result in

Corollary 1. Let ϕ : (K, π) → (L, ρ) be an embedding in ConvF . If (K, π) is compact and (L, ρ) is separated, 
then ϕ is closed.

For every K-object K, we denote by ̂K the coproduct K + 1K in K (provided it exists).

Definition 6. Let (K, π) be a ConvF -object. An embedding i : (K, π) → ( ̂K, ρ) in ConvF is said to be a 
one-point compactification of (K, π) if the following two conditions are satisfied:

1◦ i : K → K + 1K is the canonical injection.
2◦ 〈S, g〉 ρ→ y if and only if

(a) there exist an F-net 〈S, f〉 in K and a point x ∈ K∗ such that g = i ◦ f , y = i ◦ x and 〈S, f〉 π→ x, 
or

(b) y factors through the canonical injection j : 1K → K +1K and there is no subnet 〈T, h〉 of 〈S, g〉 for 
which there exists a convergent (w.r.t. π) F-net 〈T, f〉 in K such that h = i ◦ f .

Remark 1. Let i : (K, π) → ( ̂K, ρ) be a one-point compactification of a ConvF -object (K, π). Then it is 
evident that ( ̂K, ρ) is a compact K-object and that (K, π) is separated if and only if ( ̂K, ρ) is separated. It is 
also evident that a one-point compactification of a ConvF -object (if it exists) is unique up to (compositions 
with) isomorphisms.

Example 5. (1) Let F : ω → Set or F : Dir → Set be the forgetful functor, let (X, O) be a topological 
space and let (X, π) be the LimF -object where π is the convergence class associated with the topology O. 
Then (X, π) need not have any one-point compactification. On the other hand, if (X, π) has a one-point 
compactification ( ̂X, ρ), then ρ is associated with a topology P on ̂X such that ( ̂X, P) is the Alexandroff 
one-point compactification of (X, O).

(2) Let F : ω → Set be the forgetful functor. If (X, π) is a HConvF -object (i.e., a Fréchet L-space), then 
it has a one-point compactification.

(3) If S is a construct and F : S → Set the forgetful functor, then the one-point compactifications of 
ConvF -objects coincide with their one-point compactifications studied in [13] and [15].

Proposition 2. A ConvF -object is compact if and only if its one-point compactification is closed.

Proof. Let i : (K, π) → ( ̂K, ρ) be a one-point compactification of a ConvF -object (K, π). If i is closed, then 
(K, π) is compact by Theorem 2. To prove the converse implication, let (K, π) be compact. Let 〈S, g〉 ρ→ y
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where y factors through i, i.e., there exists an K-morphism f : FS → K with g = i ◦ f . Then 〈S, f〉 is an 
F-net in K, thus there exists a subnet 〈T, h〉 of 〈S, f〉 which is convergent w.r.t. π. As 〈T, i ◦ h〉 is a subnet 
of 〈S, g〉, the condition (b) of the axiom 2◦ from Definition 6 is not satisfied. Consequently, the condition 
(a) is valid, which means that there is a point x ∈ K∗ with y = i ◦ x. Therefore, i is closed. �

Corollary 1 and Theorem 2 result in

Corollary 2. Let (K, π) be a HConvF -object which has a one-point compactification i : (K, π) → ( ̂K, ρ). 
Then (K, π) is compact if and only if every embedding in HConvF with the domain (K, π) is closed.

Theorem 5. Let (K, π) be a ConvF -object which has a one-point compactification i : (K, π) → ( ̂K, ρ) and let 
there exist the product K ×K in K. If the projection pr

̂K
: (K, π) × ( ̂Kρ) → ( ̂Kρ) is sublifting, then (K, π)

is compact.

Proof. Let the projection pr
̂K

: (K, π) × ( ̂K, ρ) → ( ̂K, ρ) be sublifting and suppose that (K, π) is not 
compact. Then there exists an F-net 〈S, f〉 in K no subnet of which is convergent w.r.t. π. Consequently, 
〈S, i ◦ f〉 ρ→ y where y ∈ ̂K∗ factors through the injection j : 1K → ̂K. Let Δ : K → K ×K be the diagonal 
morphism in K. Since the K-monomorphism i fulfills i = pr

̂K
◦(idK× i) ◦Δ, we have 〈S, pr

̂K
◦(idK× i) ◦Δ ◦

f〉 ρ→ y. As pr
̂K

is sublifting, there exists a subnet 〈T, (idK×i) ◦Δ ◦f◦s〉 of 〈S, (idK×i) ◦Δ ◦f〉 which converges 
(w.r.t. π × ρ) to a point x ∈ (K × ̂K)∗ with y ∼= pr

̂K
◦ x. Let prK : K × ̂K → K be the projection. Since 

pr
̂K
◦(idK×i) ◦Δ = i ◦pr1◦Δ = i ◦pr2◦Δ = i ◦prK◦(idK×i) ◦Δ (where pr1 and pr2 : K×K → K are the first 

and second projections, respectively), we have i ◦f ◦s = pr
̂K
◦(idK×i) ◦Δ ◦f ◦s = i ◦prK ◦(idK×i) ◦Δ ◦f ◦s. 

It follows that 〈T, i ◦ f ◦ s〉 ρ→ i ◦ prK ◦ x, hence 〈T, f ◦ s〉 π→ prK ◦ x. But this is a contradiction because 
〈T, f ◦ s〉 is a subnet of 〈S, f〉. �

Theorems 3 and 5 result in

Corollary 3. Let K have finite products and let (K, π) be a ConvF -object having a one-point compactification. 
Then (K, π) is compact if and only if the projection prL : (K, π) × (L, ρ) → (L, ρ) is sublifting for every 
ConvF -object (L, ρ).

Theorem 6. Let HConvF be amnestic and let (K, π) be a HLimF -object. If (K, π) is compact, then it is a 
maximal element of the fibre of K in HConvF .

Proof. Let (K, π) be compact and let (K, ρ) be a HConvF -object such that (K, π) ≤ (K, ρ) (where ≤
denotes the partial order of the fibre of K in HConvF ). Let 〈S, f〉 ρ→ y and let 〈U, h〉 be an arbitrary subnet 
of 〈S, f〉. As (K, π) is compact, there is a subnet 〈V, p〉 of 〈U, h〉 such that 〈V, p〉 π→ x (where x ∈ K∗ is 
a point). Consequently, 〈V, p〉 ρ→ x. Since 〈V, p〉 is a subnet of 〈S, f〉, we have 〈V, p〉 ρ→ y. Hence, x ∼= y

(because (K, ρ) is separated) and, consequently, 〈S, f〉 π→ y (because (K, π) is a LimF -object). Therefore, 
idK is a continuous K-morphism from (K, ρ) to (K, π), i.e., (K, ρ) ≤ (K, π). Thus, (K, ρ) = (K, π), which 
proves the statement. �
Theorem 7. Let (K, π) be a ConvF -object with K∗ �= ∅. If (K, π) is a maximal element of the fibre of K in 
ConvF , then (K, π) is compact.

Proof. Let (K, π) be a maximal element of the fibre of K in ConvF and suppose that (K, π) is not compact. 
Then there exists an F-net 〈T, g〉 in K no subnet of which is convergent w.r.t. π. Let a ∈ K∗ be a point 
and let (K, ρ) be the ConvF -object with 〈S, f〉 π→ x if and only if either 〈S, f〉 π→ x, or x = a and 〈S, f〉 is 
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a subnet of 〈T, g〉. Then (K, ρ) is a ConvF -object and the identity K-morphism idK is continuous w.r.t. π
and ρ. Thus, (K, π) ≤ (K, ρ) and, since clearly (K, π) �= (K, ρ), we get a contradiction. �

Clearly, Theorem 7 remains valid if ConvF is replaced by HConvF (because, in the proof of Theorem 7, 
(K, ρ) is separated whenever (K, π) is separated). Therefore, Theorems 6 and 7 result in

Corollary 4. Let HConvF be amnestic and let (K, π) be a HLimF -object with K∗ �= ∅. Then (K, π) is 
compact if and only if it is a maximal element of the fibre of K in HConvF .

The following, Tychonoff’s theorem for objects of ConvF is an immediate consequence of Theorem 3.9 
from [16]. If compared with the Tychonoff’s theorem with respect to a closure operator (see [3]), its assump-
tions are much simpler:

Theorem 8. If the product of a family (Ki)i∈I of compact ConvF -objects exists, then it is compact provided 
that each I-indexed sink in ConvF has a natural source.

Remark 2. Our results show that convergence separation and convergence compactness, i.e., the introduced 
separation and compactness of objects of ConvF , preserve (analogues of) all basic properties of the classical 
separation and compactness of topological spaces. Moreover, Theorem 7 represents the results on conver-
gence compactness that are not true for the classical topological compactness. It is well known that, for 
topological compactness, the corresponding analogue of the condition in Corollary 4 (which was proved to 
be equivalent to convergence compactness) is only necessary in general.

Most of the examples presented by the paper are related to topological convergence, i.e., based on the 
forgetful functors F : ω → Set and F : Dir → Set. There are, of course, numerous examples obtained by 
considering other functors (indeed, every functor from a non-empty category to a category with a terminal 
object gives rise to such examples). But, in most of these examples, the convergence will no longer have the 
topological properties one expects of a convergence. Anyway, the categorical convergence discussed may be 
viewed as a common generalization of the sequential convergence and the net convergence (note that ω is 
not a full subcategory of Dir). It also provides new cartesian closed categories as shown in [17].
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