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Camera pose estimation is the task of determining the position and ori-
entation of a camera in 3D space, based on correspondences between3D
features and their 2D images. When these features arelines, the task is
called thePerspective-n-Line (PnL) problem. A remarkable progress in
solving PnL has been achieved in the last years, particularly thanks to the
work of Mirzaei and Roumeliotis [5] and more recently to the work of
Zhanget al. [6]. Both of the methods are accurate, cope well with noisy
data, and they are more efficient than the previously known methods.

In this paper, we propose an algebraic solution to the PnL prob-
lem which (i) is more than the order of magnitude faster than the state-
of-the-art [5, 6], (ii ) yields only one solution of the PnL problem, and
(iii ) similarly to the state-of-the-art, copes well with image noise and is
initialization-free. As an alternative to the commonly used RANSAC, Al-
gebraic Outlier Rejection scheme [1] is used to deal with mismatched line
correspondences. The proposed method requires at least 9 lines, but it is
particularly suitable for large scale and noisy scenarios, where it can be
reliably used for 25 and more lines.

Given two distinct 3D pointsA =(ax ay az aw)
⊤andB=(bx by bz bw)

⊤

in homogeneous coordinates, a line joining them can be represented us-
ing Plücker coordinates [3] as a homogeneous 6-vectorL = (u⊤ v⊤)⊤ =
(L1 L2 L3 L4 L5 L6)

⊤, where

u⊤ = (L1 L2 L3) = (ax ay az) × (bx by bz) (1)

v⊤ = (L4 L5 L6) = aw(bx by bz) − bw(ax ay az) ,

’×’ denotes a vector cross product. Thev part encodes direction of the
line while theu part encodes position of the line in space. In fact,u is
a normal vector of an interpretation plane – a plane passing through the
line and the origin. As a consequence,L must satisfy a bilinear constraint
u⊤v = 0.

Figure 1: 3D line projection. The 3D lineL is parameterized by its di-
rection vectorv and a normalu of its interpretation plane, which passes
through the origin of the camera coordinate system{C}. Since the pro-
jected 2D linel lies at the intersection of the interpretation plane and the
image plane, it is fully defined just by the normalu.

A 3D line L is projected onto the normalized image plane using the
3×6 line projection matrixP as

l ≈ PL , (2)

wherel = (lx ly lw)⊤ is a homogeneous 2D line, ’≈’ denotes an equiva-
lence of homogeneous coordinates and

P=
(

R R[−t]×
)

. (3)

R is a 3× 3 rotation matrix and[t]× is a 3× 3 skew-symmetric matrix
constructed from the translation vectort.

As the projection of 3D lines is defined by Eq. (2), the problem of
camera pose estimation resides in estimation of the line projection matrix
P, which encodes all the six camera pose parameterstx, ty, tz, α , β , γ.
We solve this problem using the Direct Linear Transformation (DLT) al-
gorithm similarly to Hartley [2], who works with points. The system of
linear equations (2) can be transformed into a homogeneous system

Mp = 0 . (4)

This forms a 2n×18 measurement matrixM which contains coefficients
of equations generated by correspondences between 3D lines and their
projectionsL i ↔ li (i = 1. . .n, n ≥ 9). The DLT then solves (4) forp
which is a 18-vector containing the entries of the line projection matrixP.
Eq. (4), however, holds only in the noise-free case. If a noise is present in
the measurements, an inconsistent system is obtained.

Mp̂ = εεε (5)

Only an approximate solution̂p may be found minimizing a 2n-vector of
measurement residualsεεε. Since DLT algorithm is sensitive to the choice
of coordinate system, it is crucial to prenormalize the data to get properly
conditionedM .

Once the system of linear equations given by (5) is solved in the least
squares sense,e.g. by SVD of M , the estimatêP of the 3× 6 line pro-
jection matrix can be recovered from the 18-vectorp̂. P̂ is obtained as a
least squares solution of Eq. (5) so it does not satisfy the constraints im-
posed onP by Eq. (3). We propose a method to extract the camera pose
parameters from the estimateP̂, which is based on an observation that the
right 3×3 submatrix ofP has exactly the same structure as the essential
matrix [4] used in multi-view computer vision. Details of the method are
described in the full paper.

Simulations and experiments with real data show that computational
efficiency of the proposed method is superior to the state-of-the-art, achiev-
ing speed-ups of more than one order of magnitude for high number of
lines. At the same time, accuracy and robustness of the method are on par
with the state-of-the-art.

Figure 2: The distribution of runtimes as a function of the number of lines.
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