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Abstract

Correspondences between 3D lines and their 2D images captured lyeaacare
often used to determine position and orientation of the camera in spacés Wottk, we
propose a novel algebraic algorithm to estimate the camera pose. Waepariae 3D
lines using Pliicker coordinates that allow linear projection of the lines into tagem
A line projection matrix is estimated using Linear Least Squares and theagose is
then extracted from the matrix. An algebraic approach to handle misnablickeecorre-
spondences is also included. The proposed algorithm is an order oftodefaster yet
comparably accurate and robust to the state-of-the-art, it doesaquiteenitialization,
and it yields only one solution. The described method requires at least®dimd is
particularly suitable for scenarios with 25 and more lines, as also showa neshilts.

1 Introduction

Camera pose estimation is the task of determining the posétnd orientation of a cam-
era in 3D space and it has many applications in computerryigiartography, and related
fields. Augmented reality, robot localization, navigation3D reconstruction are just a few
of them. To estimate the camera pose, correspondencesdrekwewn real world features
and their counterparts in the image plane of the camera bawe fearned. The features can
bee.g points, lines, or combinations of bothd]. The task has been solved usipgint cor-
respondencefirst [12, 20]. This is called theéPerspective-n-PoinPnP) problem and it still
enjoys attention of the scientific communityl]. Camera pose can also be estimated usin
line correspondencesvhich is called thd?erspective-n-LinéPnL) problem. A remarkable
progress in solving PnL has been achieved in the last y&agsl] 25], particularly thanks
to the work of Mirzaei and Roumelioti2 ] and more recently to the work of Zharmg al.
[25]. Both of the methods are accurate, cope well with noisy,datd they are more efficient
than the previously known methods. Computational effigiéa@ critical aspect for many
applications and we show that it can be pushed even further.

We propose an efficient solution to the PnL problem which isstantially faster yet
accurate and robust compared to the state-of-the2ar2p]. The idea is to parameterize the
3D lines using Pliicker coordinated] o allow using Linear Least Squares to estimate the
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projection matrix. The camera pose parameters are theswssdt from the projection matrix
by posterior constraint enforcement.

The proposed method) s more than the order of magnitude faster than the stathesf
art [21, 25], (ii) yields only one solution of the PnL problem, ariid)(similarly to the state-
of-the-art, copes well with image noise, and is initialiaatfree. These advantages make
the proposed method particularly suitable for scenaridls miany lines. The method needs
9 lines in the minimal case, so it is not practical for a RANSK@ framework because it
would result in increased number of iterations. To eliménidis, we involve an alternative
algebraic scheme to deal with mismatched line corresparasen

The rest of this paper is organized as follows. We presenviaweof related work in
Section2. Then we state the basics of parameterizing 3D lines usitigkBt coordinates in
Section3, show how the lines are projected onto the image plane andaeexploit it to
estimate the camera pose. We evaluate the performance wfathiod using simulations and
real-world experiments in Secti@gh and conclude in Sectidh

2 Related work

The task of camera pose estimation from line correspondasceceiving attention for more
than two decades. Some of the earliest works are the ones ef bl. [18] and Dhomezt al.
[10]. They introduce two different ways to deal with the PnL desb which can be tracked
until today — algebraic and iterative approaches.

Theiterative approachesonsider pose estimation as a Nonlinear Least Squarespnobl
by iteratively minimizing specific cost function, which wly has a geometrical meaning.
Earlier works [L8] attempted to estimate the camera position and orientagparately while
the latter ones?, 9, 17] favour simultaneous estimation. The problem is that niigjaf
iterative algorithms do not guarantee convergence to thigadjminimum; therefore, without
an accurate initialization, the estimated pose is ofteffrfam the true camera pose.

Thealgebraic approachesstimate the camera pose by solving a system of (usually poly
nomial) equations, minimizing an algebraic error. Dhaghal [10] and Chen §] solve the
minimal problem of pose estimation from 3 line correspor@snvhereas Ansar and Dani-
ilidis [ 2] work with 4 or more lines. Their algorithm has quadratic gatational complexity
depending on the number of lines and it may fail if the polyraraystem has more than 1
solution. More crucial disadvantage of these methods istliey become unstable in the
presence of image noise and must be plugged into a RANSACQiasiloop.

Recently, two major improvements of algebraic approaclaes been achieved. First,
Mirzaei and Roumeliotis41] proposed a method which is both efficient (linear computa-
tional complexity depending on the number of lines) and sbli the presence of image
noise. The cases with 3 or more lines can be handled. A polimi@ystem with 27 candi-
date solutions is constructed and solved through the eegamdposition of a multiplication
matrix. Camera orientations having the least square ereoc@nsidered to be the optimal
ones. Camera positions are obtained separately usingribarlieast Squares. Nonetheless,
the problem of this algorithm is that it often yields mulgolutions.

The second recent improvement is the work of Zhanhgl. [25]. Their method works
with 4 or more lines and is more accurate and robust than tilecdef Mirzaei and Roume-
liotis. Anintermediate model coordinate system is usetié@rhethod of Zhangt al., which
is aligned with a 3D line of longest projection. The lines digded into triples for each
of which a P3L polynomial is formed. The optimal solution b&tpolynomial system is
selected from the roots of its derivative in terms of a legsses residual. A drawback of
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this algorithm is that the computational time increasesnstty for higher number of lines.

In this paper, we propose an algebraic solution to the Pnblpno which is an order
of magnitude faster than the two described state-of-thera@thods yet it is comparably
accurate and robust in the presence of image noise.

3 Pose estimation using Plicker coordinates

Let us assume that we havgd calibrated pinhole camera anij €orrespondences between
3D lines and their images obtained by the camera. The 3D dneparameterized using
Plicker coordinates (Sectiéhl) which allows linear projection of the lines into the image
(Section3.2). A line projection matrix can thus be estimated using Linesast Squares
(Section3.3). The camera pose parameters are extracted from the lifjecpom matrix
(Section3.4). An outlier rejection scheme must be employed in casesenire mismatches
occur (Sectior8.5). For the pseudocode of our algorithm, please refer to Agipeh in the
supplementary materia2f]. Animplementation of our algorithm in Matlab is also prded.
Let us now define the coordinate systems: a world coordinastes{W} and a camera
coordinate systeiC}, both are right-handed. The cameraxis goes right, thg-axis goes
up and thez-axis goes behind the camera, so that the points situatedrnb déf the camera
have negative coordinates i{C}. A homogeneous 3D poirt" = (&} a) ay’ aly) " in {W}
is transformed into a poir&© = (&5 &y a &) " in {C} as

¢ (R —RU\ .
A_(om RO v, @)

whereR is a 3x 3 rotation matrix describing the orientation of the camer@W/} by means
of three consecutive rotations along the three axeg x by respective angleg, 8, a.
t=(txtyt,) " is a 3x 1 translation vector representing the position of the carirefw}.

Let us now assume that we have a calibrated pinhole cameran@ know its intrinsic
parameters), which observes a set of 3D lines. Giver9 3D linesL; (i =1...n) and their
respective projectiorigonto the normalized image plane, we are able to estimatethema
pose. We parameterize the 3D lines using Plucker coordinate

3.1 Plucker coordinates of 3D lines

3D lines can be represented using several parameterigatidhe projective spacd]. Pa-
rameterization using Plicker coordinates is completedivery 3D line can be represented)
but not minimal (a 3D line has 4 degrees of freedom but Plickerdinate is a homoge-
neous 6-vector). The benefit of using Plicker coordinatéséenvenient linear projection
of 3D lines onto the image plane.

Given two distinct 3D point#\ = (ax a, a; aw) ' andB = (by by b, by) " in homoge-
neous coordinates, a line joining them can be represeniad B$licker coordinates as a
homogeneous 6-vecttr= (u" vI)" = (L; Lo L3 L4 LsLg) ", where

u' = (Lilzls)=(axaya;) x (bcbyb;) )
vio= (LaLsLe) = aw(bx by b;) — bw(axayaz) ,
"%’ denotes a vector cross product. Thpart encodes direction of the line while thgart

encodes position of the line in space. In factis a normal of an interpretation plane — a
plane passing through the line and the origin. As a conseglenmust satisfy a bilinear
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v Figure 1: 3D line projection. The 3D line is pa-
rameterized by its direction vectgrand a normal
L u of its interpretation plane, which passes through
the origin of the camera coordinate syst¢@}.
{c} Since the projected 2D liridies at the intersection
of the interpretation plane and the image plane, it
is fully defined by the normal.

constraintu"v = 0. Existence of this constraint explains the discrepantyéen 4 degrees
of freedom of a 3D line and its parameterization by a homogese-vector. More on
Plucker coordinates can be found ir5].

3.2 Projection of 3D lines

3D lines can be transformed from the world coordinate sygtéfh into the camera coordi-
nate syster{C} using the 6x 6 line motion matrixT [3] as

LC=TLY . 3)
The line motion matrix is defined as

T= ( gm R[Et]x ) : (4)

whereR is a 3x 3 rotation matrix andt] is a 3x 3 skew-symmetric matrix constructed
from the translation vectar'. After 3D lines are transformed into the camera coordinate
system, their projections onto the image plane can be datedwas intersections of their
interpretation planes with the image plane; see Figu illustration.

Recall from Eq. 2) that coordinates of a 3D line consist of two 3-vectous{normal
of an interpretation plane) and(direction of a line). Since is not needed to determine
the projection of a line, only needs to be computed. Thus, when transforming a 3D line
according to Eq.3J) in order to calculate is projection, only the upper halflofs needed,
yielding the 3x 6 line projection matrix

P=(R R[-t.) . (5)
A 3D line LY is then projected using the line projection matias
I€~PLY | (6)

wherel® = (I IS 13)" is a homogeneous 2D line in the normalized image plane and ’
denotes an equivalence of homogeneous coordinates, ualitgqup to multiplication by a
scale factor.

3.3 Linear estimation of the line projection matrix
As the projection of 3D lines is defined by E®),the problem of camera pose estimation
resides in estimating the line projection matRxwhich encodes all the six camera pose
parameters,, ty, t, a, B, y.

We solve this problem using the Direct Linear Transfornma{@LT) algorithm, similarly
to Hartley [L4] who works with points. The system of linear equatioB)soan be transformed
into a homogeneous system

Mp =0 ()

1please note that our line motion matrix differs slightly frdme matrix of Bartoli and Sturng] Eq. (6)], namely
in the upper right term: We haw[—t] . instead offt] R due to different coordinate system.
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by transforming each equation d)(so that only a 0 remains at the right-hand side. This

forms a 21 x 18 measurement matriM which contains coefficients of equations generatec

by correspondences between 3D lines and their projectiprs |; (i=1...n, n>9). For

details on construction dfl, please refer to Appendix B in the supplementary mate?igl [
The DLT then solves?) for p which is a 18-vector containing the entries of the line

projection matrixP. Eq. (7), however, holds only in the noise-free case. If a noiseésnt

in the measurements, an inconsistent system is obtained.

Mp=¢ (8)

Only an approximate solutigf may be found through minimization of aector of mea-
surement residualsin the least squares sense on the right hand side oBEg. (

Since DLT algorithm is sensitive to the choice of coordingystem, it is crucial to
prenormalize the data to get properly conditioMdd13]. Thanks to the principle of du-
ality [8], coordinates of 2D lines can be treated as homogeneousdinates of 2D points.
The points should be translated and scaled so that theirosgnm$ at the origin and their
average distance from the origin is equalf@.

The Plucker coordinates of 3D lines cannot be treated as gensmus 5D points because
of the bilinear constraint (see Secti8rl). However, the closest point to a set of 3D lines
can be computed using the Weiszfeld algoritiingind the lines can be translated so that the
closest point is the origin.

Once the system of linear equations given 8)i¢ solved in the least squares seresg,
by Singular Value Decomposition (SVD) ™, the estimatd® of the 3x 6 line projection
matrix P can be recovered from the 18-vecfor

3.4 Estimation of the camera pose

The 3x 6 estimate® of the line projection matriX® obtained as a least squares solution o
Eqg. @) does not satisfy the constraints imposedPoin fact,P has only 6 degrees of freedom
—the 6 camera pose parametgrs,, t;, a, 3, y. It has, however, 18 entries suggesting that it
has 12 independent linear constraints, see BqThe first six constraints are imposed by the
rotation matrixR that must satisfy the orthonormality constraints (unitm@nd mutually
orthogonal rows). The other six constraints are imposedeyskew-symmetric matrift]
(three zeros on the main diagonal and antisymmetric offatial elements). We propose the
following method to extract the camera pose parameters fihenestimaté.

First, the scale o has to be determined, sinpds usually of unit length as a minimizer
of £ in Eq. ). The correct scale oP can be determined from its left>33 submatrix
P, which is an estimate of the rotation matf Since the determinant of an orthonormal
matrix must be equal to £ has to be scaled by a fact®t=1/+/detP; so that defisP1) = 1.

Second, the camera pose parameters can be extracted®orhe scaled right % 3
submatrix ofP. The right submatrix is an estimate of a product of an orthorad and a
skew-symmetric matrixR[—t] <) which has the same structure as the essential mai#ix [
used in multi-view computer vision. Therefore, we use a meéttor the decomposition of
an essential matrix into a rotation matrix and a skew-symmastatrix (see 15, p. 258]) as
follows: LetsP, = UZV T be the SVD of the scaled>33 submatrixsP,, and let

010 0 -1 0
z=| -1 00| .,w=[1 00o0]. )
000 0 01
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Two possible solutions (A and B) exist for the estimBtef the rotation matrix and estimate
[t],. of the skew-symmetric matrix:

Ra=UW diag11+1)V", [t],,=0VZ VT

> TH; T A TyT (10)
Re=UW'diagl1+1)V', [t],g=0VZ'V

whereo = (211 + 2»2)/2 is an average of the first two singular valuesios (a properly
constrained essential matrix has the first and second singalues equal to each other and
the third one is zero). Thel term in Eq. {0) denotes either 1 or1 which has to be put on
the diagonal so that dBiy = detRg = 1.

The correct solution A or B is chosen based on a simple che@theh 3D lines are in
front of the camera or not. Extraction of the componéits,, t, of the translation vector
from the skew symmetric matri] . and also extraction of the rotation angkesg, y from
the rotation matribR are straightforward. This completes the pose estimationquture.

Alternative ways of extracting the camera pose parametens$P also existe.g com-
puting the closest rotation matrfX to the left 3x 3 submatrix ofsP; and then computing
it], = —RTsP,. However, our experiments showed that the alternative \aesy$ess robust
to image noise. Therefore, we have chosen the solutionidesdn this section.

3.5 Rejection of mismatched lines

In practice, mismatches of lines (i.e. outlying correspmks) often occur, which degrades
the performance of camera pose estimation. RANSAC algarishcommonly used to iden-
tify and remove outliers; however, as our method works witlin®l more line correspon-
dences, it is unsuitable for use in a RANSAC-like framewoekduse the required number
of correspondences leads to increased number of iterations

For this reason, we use an alternative scheme called AligeBrdlier Rejection (AOR)
recently proposed by Ferraz al. [11]. It is an iterative approach integrated directly into the
pose estimation procedure (specifically, into solving BYjif{ Section3.3) in form of Itera-
tively Reweighted Least Squares. Wrong correspondencéseantified as outlying based on
the residuak; of the least squares solution in Eg).(Correspondences with residuals above
a predefined threshok,.x are assigned zero weights, which effectively removes thhem f
processing in the next iteration, and the solution is reagegh This is repeated until the
error of the solution stops decreasing.

The strategy for choosingnax may be arbitrary but our experiments showed that the
strategyemax = Qj(€1,...,&n) has a good tradeoff between robustness and the number o
iterations. Q(-) denotes thgth quantile, wherg decreases following the sequence (0.9,
0.8,..., 0.3) for the first 7 iterations and then it remains consta2®.0This strategy usually
leads to approximately 10 iterations.

It is importantnotto prenormalize the data in this case because it will impkdédenti-
fication of outliers. Prenormalization of inliers shoulddmne just before the last iteration.

4 Experimental evaluation

Accuracy, robustness, and efficiency of the proposed adlgonivere evaluated and compared
with the state-of-the-art methods. The following methodserxcompared:
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1. Mirzaei, the method by Mirzaei and Roumeliotial] (results shown in rea),
2. Zhang, the method by Zhangt al. [25] (results shown in blua),
3. ours, the proposed method (results shown in gnegn

Both simulations using synthetic lines and experimentagusie real-world imagery are
presented.

4.1 Synthetic lines

Monte Carlo simulations with synthetic lines were perfodumder the following setup: at
each trialn 3D line segments were generated by randomly placing segenépbints inside
a cube 18 m large which was centered at the origin{t}. A virtual pinhole camera with
image size of 64& 480 pixels and focal length of 800 pixels was placed randamlhe
distance of 25 m from the origin. The camera was then oriestethat it looked directly
at the origin, having all 3D line segments in its field of vieWhe 3D line segments were
projected onto the image plane. Coordinates of the 2D entpuiere then perturbed with
independent and identically distributed Gaussian noisie standard deviation afy, pixels.
1000 trials were carried out for each combinatiomod, parameters.

Accuracy and robustness of each method was evaluated byrimepthe estimated and
true camera pose while varyimgnda,, similarly to [21]. The position erroAT = |[t —t|| is
the distance from the estimated posittdn the true position. The orientation erroA® was
calculated as follows. The difference between the true atichated rotation matrixR ' R)
is converted to axis-angle representatierf() and the absolute value of the difference angle
|8] is considered as the orientation error.

175 o P ! '

2k 0 =2 px 150 A® [°], 6 = 10 px
ol = : 125}
8t : : 4 100 F
6 L . v i 75 - -
4| i 1 sof .
iy 1l .
i TN NITRE WIINIIR
9 25 50 100 300 9 25 50 100 300
# lines # lines
12t . v R ] o T
: : m Mirzaei 5ok :
10k At [m], 6, =2 px ® Zhang | J At [m], o, = 10 px
. . u ours
H 40.

P . P | 30t
i ! ! 1
i | |

g 1 20f

%: l ||l ll L "l ! l:

50 100 300 9 25 50 100 300
# lines # lines

o
[
W

Figure 2: The distribution of orientation errol8@, top) and position errorst, bottom)

in estimated camera pose as a function of the number of liives levels of Gaussian noise
are depicted: with standard deviationaf = 2 px (left) and withagp = 10 px (ight). Each
box depicts the mediamésl), interquartile range - IQRbx body, minima and maxima in
the interval of 1& IQR (whisker$ and outliers isolated dots
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As illustrated in Figure, 25 lines are generally enough for our method to be on par with
the state-of-the-art in terms of accuracy. 50 and more kmesusually exploited better by
our method. As the number of lines grows, our method becor@sraore accurate than the
others. It should be noted that the orientation error dese®aore rapidly than the position
error with the number of lines. Our method is outperformethgothers in the minimal case
of 9 lines. However, as soon as more lines are available gdts of our approach rapidly
improve. This fact is a matter of chosen parameterizatidiicker coordinates of 9 lines
are just enough to define all 18 entries of the line projeatiatrix P in Eq. (). More lines
bring redundancy into the system and compensate for noise imeasurements. However,
even 9 lines are enough to produce an exact solution in a-freisease.

All the three methods sometimes yield an improper estimétie exactly opposite ori-
entation. This can be observed as isolated dots partigutafigure?2 (top, right). Further-
more, the method of Mirzaei sometimes produced an estimagzarthe camera is located
in between the 3D lines and it has random orientation. Thipbaed more frequently in
the presence of stronger image noise, as it is apparent fioradsed red bars in FiguPe
(right). The robustness of Mirzaei’'s method is thus muchdoaompared to our method
and Zhang’s method. However, the method of Zhang sometinoelsiped a degenerate pose
estimate very far from the correct camera position when érgs projected onto a single
image point (this phenomenon cannot be seen in Figagsuch estimates are out of scale
of the plots). The proposed method does not suffer from atlyesfe two issues and is more
robust in cases with 50 and more lines.

4.2 Real images

The three methods were also tested using real-world imagesthe VGG Multiview Data-
sef. It contains indoor and outdoor image sequences of buiddimigh extracted 2D line
segments, their reconstructed positions in 3D, and canmejegtion matrices. Each method
was run on the data and the estimated camera poses were uspdbject the 3D lines onto
the images to validate the results.

The proposed algorithm performs similarly or better thaais method while Mirzaei's
method behaves noticeably worse, as it can be seen in RBganmé Tablel. Detailed results
with all images from the sequences are available as supptanyematerial 22].

m Mirzaei
m Zhang
= ours

COR MCl MC2 MC3 ULB WDC ‘ COR MClI MC2 MC3 ULB WDC

Figure 3: (op) Example images from the VGG dataset overlaid with reptaes of 3D
line segments using our estimated camera pdz#tqm) Average camera orientation error
A© = |6| and average position errAr = ||t —t|| in individual image sequences.

2http: // www. r obot s. ox. ac. uk/ ~vgg/ dat a/ dat a- nvi ew. ht ni
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# # Mirzaei Zhang ours
Sequence lines imgs. A®© At AG® AT JAXC) AT
Corridor 69 11 15.510 1.510m 0.029° 0.008m 0.034° 0.013m

Merton College | 295 3 1.6100.511m 0.40% 0.115m 0.195 0.128m
Merton College Il 302 3 22477 5.234m 0.676 0.336m 0.218° 0.151m
Merton College Ill 177 3 1.667 0.608m 0.859 0.436m 0.223° 0.101m
University Library 253 3 0.837 0.423m 1558 0.833m 0.18%° 0.138m
Wadham College 380 5 21.7783.907m 0.103 0.047m 0.086 0.072m

Table 1: Results of the methods on the VGG dataset in termgenbge camera orientation
errorA© = |8| and average position errAr = ||t —t||. Best results are in bold.

4.3 Efficiency

Efficiency of each method was evaluated by measuring runtma desktop PC with a
quad core Intel i5 3.33 GHz CPU. Matlab implementations doatted from the websites
of the respective authors were used. As it can be seen in Zadole Figure4, our method
significantly outperforms the others in terms of speed. Qaatpnal complexity of all
evaluated methods is linearly dependent on the number e$.lirHowever, the absolute
numbers differ substantially. Mirzaei's method is slowleart Zhang's method for up to
cca 200 lines. This is due to computation of a 32020 Macaulay matrix in Mirzaei’'s
method which has an effect of a constant time penalty. How@beng's method is slower
than Mirzaei's for more than 200 lines. Our method is thedsisho matter how many
lines are processed,; it is approximately one order of madaifaster than both competing
methods. The linear computational complexity of our mettsodnly achieved due to the
prenormalization of input data and subsequent SVD of the 28 measurement matri\;
all the other computations are performed in constant time.

1000 = Mirzaei T
. s |zt by
#lines 9 100 1000 L) T R Y *+ + ]
Mirzaei 72.0 79.5 168.2 E + i
Zhang 87 421 8994 2 | * + + ]
ours 32 3.8 285 E ’ . : +
& * * * *
1 9 25 50 100 250 500 1000
# lines

Table 2: Runtimes in millisec- Figure 4: The distribution of runtimes as a function
onds for varying number of lines,of the number of lines. Logarithmic vertical axis.
averaged over 1000 runs. Meaning of the boxes is the same as in Figtire

4.4 Robustness to outliers

As a practical requirement, robustness to outlying cooedpnces was also tested. The ex-
perimental setup was the same as in Sectidnusingn = 500 lines which endpoints were
perturbed with slight image noise wiity, = 2 pixels. The image lines simulating outly-
ing correspondences were perturbed with an aditional mxtneoise withap = 100 pixels.
The methods of Mirzaei and Zhang were plugged into a MLESACiifgproved version of
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RANSAC) [24] framework, generating camera pose hypotheses from 3 aaddbmly se-
lected line correspondences, respectively. The inlyimgespondences were identified based
on the line reprojection erro2B]. No heuristics for early hypothesis rejection was utitize
as it can also be incorporated into the Algebraic OutlieeBR&pn schemee.g by weight-
ing the line correspondences. The proposed method with A@QRs&t up as described in
Section3.5.

While the RANSAC-based approaches can theoretically haaalepercentage of out-
liers, the proposed method with AOR has a break-down poiabatit 30 % of outliers, as
depicted in Figures. However, for the lower percentage of outliers, our mettodore
accurate and 53¢ faster.

60

50

Runtime [ms], log

8 MLESAC+Mirzaei

40 | mMLESAC+Zhang
30

® AOR+ours

0% 20% 40% 0% 20% 40% 0% 20% 40%

Figure 5. Camera pose errotsft, center) and runtime (ight ) depending on the percentage
of outliers.n = 500 lines,op, = 2 pixels, averaged over 1000 runs.

The original AOR approach applied to the PnP problérij has a higher break-down
point at 45 %. We think it might be because the authors needtimate a null space with
only 12 entries whereas we estimate 18 entries of the nakspan Eq. ). The use of
barycentric coordinates for parameterization of 3D paim{d.1] may also play a role.

5 Conclusions

In this paper, a novel algebraic approach to the Perspeathiae problem is proposed. The
approach is substantially faster, yet equally accurateamast compared to the state-of-the-
art. The superior computational efficiency of the proposethod achieving speed-ups of
more than one order of magnitude for high number of linesasgal by simulations and ex-
periments. As an alternative to the commonly used RANSA@ghBtaic Outlier Rejection
is used to deal with mismatched lines. The proposed mettmdres at least 9 lines, but it
is particularly suitable for large scale and noisy scersarker very small size noisy scenar-
ios (< 25 lines), the state-of-the-art performs better and wemagend to use the Zhang's
method. Future work involves examination of the degendirmg¢econfigurations.

The Matlab code of the proposed method and the appendicpsialiely available in the
supplementary materiakp].
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