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Abstract With the start of the widespread use of discrete

wavelet transform in image processing, the need for its

efficient implementation is becoming increasingly more

important. This work presents several novel SIMD-vec-

torized algorithms of 2-D discrete wavelet transform, using

a lifting scheme. At the beginning, a stand-alone core of an

already known single-loop approach is extracted. This core

is further simplified by an appropriate reorganization of

operations. Furthermore, the influence of the CPU cache on

a 2-D processing order is examined. Finally, SIMD-vec-

torizations and parallelizations of the proposed approaches

are evaluated. The best of the proposed algorithms scale

almost linearly with the number of threads. For all of the

platforms used in the tests, these algorithms are signifi-

cantly faster than other known methods, as shown in the

experimental sections of the paper.

Keywords Discrete wavelet transforms � Image

processing

1 Introduction

The discrete wavelet transform (DWT) [13] is a mathe-

matical tool which is suitable for the decomposition of a

discrete signal into low-pass and high-pass frequency

components. Such a decomposition is often performed at

several scales. It is frequently used as the basis of sophis-

ticated compression algorithms. An inverse transform has a

symmetric nature compared to the forward version of the

transform. For this reason, this article discusses only the

forward transform.

Considering the number of arithmetic operations, a

lifting scheme [9] can be an efficient way for computing

the discrete wavelet transform. The transform using this

scheme can be computed in several successive lifting steps.

A simple approach of the lifting scheme evaluation directly

follows the lifting steps. This approach suffers from the

necessity of using several reads and writes of intermediate

results, which slows down the computation. Anyhow, there

are ways [1, 7] of lifting evaluation more efficiently.

This paper focuses on the Cohen–Daubechies–Feauveau

(CDF) 9/7 wavelet [8], which is often used for image

compression (e.g., JPEG 2000 or Dirac standards).

Responses of this wavelet can be computed by a convo-

lution with two FIR filters, one with 7 and the other with 9

real-valued coefficients. The transform employing such a

wavelet can be computed in four successive lifting steps, as

shown in [9].

In the case of two-dimensional transform, the DWT can

be realized using the separable decomposition scheme [12].

In this scheme, the coefficients are evaluated by successive

horizontal and vertical 1-D filtering, resulting in four dis-

joint groups (LL, HL, LH and HH subbands). A naive

algorithm of 2-D DWT computation directly follows the

horizontal and vertical filtering loops. Unfortunately, this

approach is encumbered with several accesses to interme-

diate results. State-of-the-art algorithms fuse the horizontal

and vertical loops into a single one, which results in the

single-loop approach [11].

This paper presents a SIMD-vectorized algorithm for

calculation of the 2-D discrete wavelet transform through
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the lifting scheme. The algorithm is based on the single-

loop approach introduced earlier in [11]. At the beginning,

a stand-alone core of such an approach is extracted. The

core is further simplified by appropriately reorganizing and

merging some of the operations inside. Moreover, the

complicated treatment of image borders is also omitted in

this step. At this stage, the influence of the CPU cache on

the 2-D processing order is studied and discussed. Fur-

thermore, several SIMD-vectorizations of the cores are

proposed here. Finally, a complete image processing using

these vectorized cores is broken into independent parts and

parallelized using threads. The best of the proposed algo-

rithms scale almost linearly with the number of threads.

In present-day personal computers (PCs), general-pur-

pose microprocessors with SIMD instruction set are almost

always found. For example, in the x86 architecture, the

appropriate instruction set is streaming SIMD extensions

(SSE). This fourfold SIMD set fits exactly the CDF 9/7

lifting data flow graph when using the single-precision

floating-point format. This paper is focused on the present

computers with x86 architecture. All the methods presented

in this paper are evaluated using mainstream PCs with Intel

x86 CPUs. Intel Core2 Quad Q9000 running at 2.0 GHz

was used. This CPU has 32 kiB of level 1 data cache and

3 MiB of level 2 shared cache (two cores share one cache

unit). The results were verified on a system with AMD

Opteron 2380 running at 2.5 GHz. This CPU has 64 kiB of

level 1 data, 512 kiB of level 2 cache per core and 6 MiB

of level 3 shared cache (all four cores share one unit).

Another set of verification measurements was made on

Intel Core2 Duo E7600 at 3.06 GHz (32 kiB level 1 data,

3 MiB level 2) and on AMD Athlon 64 X2 4000? at

2.1 GHz (65 kiB level 1 data, 512 kiB level 2). Due to

limited space, the details are not shown for these platforms

with the exception of a summarizing table. All the algo-

rithms below were implemented in the C language, using

the SSE compiler intrinsics.1 In all cases, a 64-bit code

compiled using GCC 4.8.1 with -O3 flag was used.

The rest of the paper is organized as follows. The Sect. 2

discusses the state of the art—especially the lifting scheme,

vertical and diagonal vectorizations and the 2-D single-

loop approach. The Sect. 3 roposes a method eliminating

the problems of complicated implementation of the original

approach. The Sect. 4 studies the influence of CPU caches

on the 2-D transform using the proposed method. The Sect.

5 vectorizes the proposed cores to make good use of the

SIMD instruction set. In addition, the Sect. 6 illustrates

how the core approach can be employed with the widely

used symmetric border extension. The Sect. 7 demonstrates

that the proposed approaches perform better when

parallelized compared to the known ones. Finally, the Sect.

8 summarizes the paper and outlines the future work.

2 Related work

On many architectures, the lifting scheme [9, 16] is the

most efficient scheme for computing the discrete wavelet

transform. Any discrete wavelet transform with finite filters

can be factorized into a finite sequence of N pairs of predict

and update convolution operators Pn and Un. Such a lifting

factorization is not generally unique. For symmetric filters,

the non-uniqueness can be exploited to maintain the sym-

metry of lifting steps. In detail, each predict operator Pn

corresponds to a filter p
ðnÞ
i and each update operator Un to a

filter u
ðnÞ
i .

In Daubechies and Sweldens [9] demonstrated an

example of CDF 9/7 transform factorization which resulted

in four lifting steps (N ¼ 2 pairs) plus final scaling of the

coefficients. In their example, the individual lifting steps

use 2-tap symmetric filters for the prediction as well as the

update. During this calculation, intermediate results can be

appropriately shared between neighboring pairs of coeffi-

cients. The calculation operates as an in-place algorithm,

which means the DWT can be calculated without allocating

auxiliary memory buffers. The resulting coefficients are

interleaved in place of the input signal. The calculation of

the complete CDF 9/7 DWT is depicted in Fig. 1 (coeffi-

cient scaling is omitted).

Originally, the problem of minimum memory imple-

mentations of the lifting scheme was adressed in [7] by

Chrysafis and Ortega. However, their approach is very

general and it is not focused on parallel processing. A

variation of this implementation was presented by Kutil in

[11], which is specifically focused on a vectorized CDF 9/7

wavelet transform. The author splits the lifting data flow

graph into vertical areas (see the dashed area in Fig. 1).

Due to the dependencies of individual operations, compu-

tations inside these areas cannot be parallelized. However,

this approach is advantageous thanks to the locality of data

Fig. 1 Complete data flow graph of CDF 9/7 wavelet transform. The

input signal is at the top, output at the bottom. The vertical (dashed)

as well as the diagonal (dotted) vectorization is outlined

1 The code can be downloaded from

http://www.fit.vutbr.cz/research/prod/?id=211.
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required to compute output coefficients. This algorithm can

be vectorized by handling the coefficients in blocks. In this

paper, Kutil’s method is called vertical vectorization.

In contrast to the previous method, we have presented a

diagonal vectorization (the dotted area in Fig. 1) of the

algorithm described in [1]. This vectorization allows the

use of SIMD processing without grouping coefficients into

blocks. Unlike the vertical vectorization, which handles

coefficients in blocks, our method processes pairs of

coefficients one by one immediately when available. This

strategy can be especially useful on systems equipped with

a small CPU cache.

Many papers are focused on 2-D transforms. For

instance, in Chatterjee and Brooks [3] proposed two opti-

mizations of the 2-D transform. The first optimization

interleaves the operations of the 1-D transform on multiple

columns. The second optimization modifies the layout of

the image data so that each sub-band is laid out contigu-

ously in memory. Furthermore, in [4], the authors address

the implementation of a 2-D transform focusing on mem-

ory hierarchy and SIMD-parallelization. Here, the pipe-

lined computation is applied in vertical direction on

subsequent rows. The abovementioned work was later

extended to [6], where vectorization using SSE instructions

is proposed to be used on several rows in parallel. In [5],

the same authors introduced a new memory organization

for 2-D transforms, which is a trade-off between the in-

place and the Mallat organizations. In [5, 6], the authors

vectorized a transform using an approach similar to the one

described in [11]. In [14, 15], several techniques for

reducing cache misses for 2-D transforms were proposed.

Moreover, two techniques for avoiding address aliasing

were proposed in [15].

Further in [11], the author focuses on the 2-D transform

in that he merges vertical and horizontal passes into a

single loop. Two nested loops (an outer vertical and an

inner horizontal loop) are considered as a single loop over

all pixels of the image. The author called it the single-loop

approach. Specifically, two vertically vectorized loops are

merged into a single one. Since the output of horizontal

filtering is the input of vertical filtering, the output of the

first filtering is used immediately when it is available.

Kutil’s single-loop approach is based on the vertical vec-

torization. One step of the vertical vectorization requires

two values (a pair) to perform an iteration (see the dataflow

graph in Fig. 1). Thus, the algorithm needs to perform two

horizontal filterings (on two consecutive rows) at once. For

each row, a low-pass and a high-pass coefficient are pro-

duced, which makes 2� 2 values in total. The image

processing by this core is outlined in Fig. 2. The vertical

vectorization algorithm passes four values from one itera-

tion to the other in horizontal direction for each row (eight

in total). In vertical direction, the algorithm needs to pass

four rows between iterations. The length of the core-

sponding prolog as well as epilog phases is F ¼ 4 coeffi-

cients. The situation is illustrated in Fig. 3.

In [2], we have proposed a combination of the above-

described approach with our algorithm of diagonal vec-

torization presented in [1]. In this case, the single-loop pass

over all pixels of the image remains. In contrast to Kutil’s

work, we employed the diagonal vectorization in the heart

of our algorithm. The diagonal vectorization uses two

values to perform one iteration. Thus, also this algorithm

needs to perform two horizontal filterings at once. The

kernel also has the size of 2� 2 values in total. In the

horizontal direction, the diagonal vectorization passes four

values from one iteration to the other for each row. How-

ever, the algorithm needs to pass 12 rows between itera-

tions in the vertical direction. The lengths of the

coresponding prolog and epilog phases are F ¼ 10

F

F

read

write

Fig. 2 A core of the single-loop approaches. Already read/written

area is shown in light/dark gray

2× 2

prolog

core

epilog

prolog epilog

F

F

FF

Fig. 3 Simplified view of the single-loop approach showing the

prolog and epilog phases. The length F of these phases is 4 (vertical

vectorization) or 10 (diagonal one) coefficients
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coefficients now. Unlike the vertical vectorization, the

diagonal can be simply SIMD-vectorized in the 1-D and

thus also in the 2-D case. Finally, a large part of the 2� 2

diagonally vectorized kernel is written using SSE instruc-

tions which perform 4 operations in parallel. A drawback

of this method is the three times greater memory required

for row buffers.

The implementation of 2-D DWT was also studied on

modern programmable graphics cards (GPUs). In this

scenario, the input image has to be initially transferred

from the main memory into the memory on the graphics

card. Analogously, the resulting coefficients have to be

transferred back. For instance, when implemented in

GPU’s fragment shaders, the filter-bank scheme often

outperforms lifting scheme filtering for shorter wavelets, as

reported in [17]. In contrast, the authors of [18] compared

the preceding approach with lifting and convolution

implementation of various integer-to-integer wavelet

transforms using CUDA and found the lifting scheme more

advantageous.

As can be seen, the problem of efficient 2-D discrete

wavelet transform implementation was widely studied.

Despite this fact, we propose several improvements that

lead to additional speedups.

Since this work is based on our previous work in [1] and

[2], it should be explained what the difference between this

work and [1, 2] is. In [1], we have presented the diagonal

vectorization of the 1-D lifting scheme. This vectorization

cuts a data flow diagram of the lifting scheme for the

purpose of exploiting SIMD instructions easily. Moreover,

in [2], we have proposed a combination of the 2-D single-

loop approach [11] with our algorithm of 1-D diagonal

vectorization. This combination allows a SIMD-vector-

ization of a newly formed 2-D image processing algorithm

while preserving its minimum memory requirements. In

this paper, we further develop the 2-D single-loop approach

into the so-called core approach. This newly proposed

approach is further tuned, vectorized and parallelized.

3 Core approach

In this section, several single-loop algorithm optimization

techniques are proposed. They are applicable on vertical as

well as diagonal vectorization. In all cases, these optimi-

zations led to a speedup in comparison with the original

single-loop approach.

To solve the complicated border treatment problem

described above (see Fig. 3), we decided to remove these

difficult parts of the border area processing code. We kept

only the 2� 2 core of 2-D lifting, which produces a four-

tuple of coefficients (LL, HL, LH and HH). This was done

in both vectorizations—the vertical as well as the diagonal

one. Such a modification requires two additional changes in

image processing.

First, the row and column buffers must be prefilled

before the core calculation. The simplest way is to fill them

with zeros, which corresponds to extending the image

borders with zeros.

The second change is to place a filtered input image into

the enveloping frame as seen in Fig. 4. This is necessary

for two reasons. First, the core can process only images

with sizes which are multiples of two in both directions.

Second, the core produces resulting coefficients with a lag

of F samples in both directions. Thus, to place the coeffi-

cients into corresponding positions as in the input image,

the 2� 2 core needs to store the results to ðx� F; y� FÞ
coordinates with respect to input coordinates ðx; yÞ. Note
that F is equal to 4 for the vertical and 10 for the diagonal

vectorization for the CDF 9/7 wavelet. The disadvantage of

this change is a slightly higher memory consumption.

The approach just proposed above corresponds to the

zero-padding signal extension. One can simply employ the

proposed approach with a widely used symmetric-padding

as illustrated in the Symmetric Extension section.

This proposed simplification allows the programmer to

write a much simpler code. Another consequence is that the

code has a reduced footprint in level 1 instruction cache

[10] possibly allowing faster execution. Moreover, with

this approach, we tried another 2� 2 core optimization.

This 2-D core is actually composed of four 1-D cores (two

in the horizontal and two in the vertical direction). With the

scaling constant f, the scaling of one pair of coefficients

can be written as element-wise multiplication by a vector

½f�1 f�. For horizontal filtering, this results in element-wise

multiplication by a matrix Z as in (1).

2× 2

core

Fig. 4 Simplified view of implementation of the core approach

showing the zero padding (light gray). The zero padding in the dotted

area needs not be read because its zero effect is known in advance.

An initial position of the core from Fig. 2 is shown in the top left

corner
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Z ¼ f�1 f
f�1 f

� �
ð1Þ

For the vertical direction, the scaling is done with the

transposed matrix ZT . Since the output of the first two

2� 2 cores is the input of the second two cores and since

the lifting is just a linear transform, we have merged the

two coefficient scalings from the first 2� 1 cores into the

second 1� 2 cores. This can be conjointly written as ele-

ment-wise multiplication by (2).

Z � ZT ¼ f�2 1

1 f2

� �
ð2Þ

The optimized cores produce exactly the same results as

the original ones. A comparison of execution times is

shown in Figs. 5 and 6. Both axes are shown in a loga-

rithmic scale. Above 1 megapixel, the core approach

becomes faster than the single-loop approach. It is true

especially thanks to the omission of complicated prolog

and epilog phases, which makes the code short and simple.

All of the above approaches (naive, single-loop and

core) in combination with vectorizations (vertical, diag-

onal) are compared in Tables 1 and 2. The naive

algorithm is used as the reference one. All the mea-

surements were performed on a 58 megapixel image. See

the Sect. 1 for a detailed explanation of the platforms.

The naive algorithm of 2-D DWT computation directly

follows the horizontal and the vertical filtering loops.

Therefore, these loops are not fused together and remain

separated.

Our implementations can deal with identical (in-place

processing) as well as distinct (out-of-place) source and

destination memory areas. However, this paper evaluates

solely the in-place variant. Since our cores are parame-

trized by four pointers (LL, HL, LH and HH coefficients),

changing the memory layout is a trivial modification. The

paper uses the interleaved layout.

4 CPU cache influence

This section studies the influence of CPU caches on a 2-D

transform using the core approach. Some type of the CPU

cache is present in all modern platforms. However, all the

Fig. 5 Comparison of the single-loop and the core approaches on

Intel CPU

Fig. 6 Comparison of the single-loop and the core approaches on

AMD CPU

Table 1 Reference platforms

Algorithm Intel AMD

Time Speedup Time Speedup

Naive vertical 21.9 1.0 47.1 1.0

Naive diagonal 19.8 1.1 46.9 1.0

Single-loop vert. 8.4 2.6 15.3 3.1

Single-loop diag. 7.7 2.8 11.7 4.0

Core vertical 8.5 2.6 8.4 5.6

Core diagonal 7.1 3.1 9.6 4.9

Performance evaluation of both of the vectorizations and all of the

approaches. The time is given in nanoseconds per pixel

The best results (fastest methods) are shown in bold

Table 2 Alternative platforms

Algorithm Intel AMD

Time Speedup Time Speedup

Naive vertical 19.4 1.0 154.0 1.0

Naive diagonal 17.7 1.1 152.3 1.0

Single-loop vert. 6.2 3.1 20.4 7.5

Single-loop diag. 5.7 3.4 17.0 9.1

Core vertical 6.3 3.1 12.4 12.4

Core diagonal 5.2 3.7 15.7 9.8

Performance evaluation of both of the vectorizations and all of the

approaches. The time is given in nanoseconds per pixel

The best results (fastest methods) are shown in bold
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experiments presented in this paper are closely focused on

the x86 architecture. For details, see [10].

In the cache hierarchy, the individual coefficients of the

transform are stored inside larger and integral blocks (called

cachelines). A hardware prefetcher attempts to speculatively

load these blocks in advance, before they are actually

required. Due to the limited size of the cache, the least

recently used blocks are evicted (discarded or stored into the

memory).Moreover, due to a limited cache associativity, it is

also impossible to hold in the cache the blocks corresponding

to arbitrary memory location at the same time.

Kutil studied [11] a performance degradation in the

vertical filtering (especially when the row stride is a power

of two). This degradation is a consequence of a limited set

associativity of the CPU cache. Since every image pixel is

visited only once in the single-loop approach as well as in

the core one, such a degradation is completely avoided in

these two cases. To avoid doubts about possible caching

issues, we use the prime stride between subsequent rows of

the image as suggested in [11].

Even though every four-tuple of pixels is visited only

once, certain caching issues can be expected due to the

mutual shift of read and write heads of the cores (either the

vertical core or the diagonal one). This mutual shift of

heads guarantees that the resulting coefficients are placed

into the same ðx; yÞ-coordinates as the corresponding input

pixels. However, this is not the only possible memory

layout. The read and write heads of the cores can point to

the same or, on the contrary, to completely different

memory locations. For the reason described above, several

processing orders have been evaluated to find the most

friendly one with respect to CPU caches [10]. In all the

cases studied below, the adjacent pixels (coefficients) in

image rows were stored without gaps. Note that the coef-

ficients are represented as 32-bit floating-point numbers.

Two different fundamental orders are possible—the

horizontal order (also known as a raster order) and the

vertical order. Considering the limited sizes and possibly

limited set associativities of CPU caches, the processing

can be performed on the appropriate strips or blocks. This

results in six combinations in total. Note that other (more

complicated) processing orders also exist. The strip pro-

cessing order (referred to as strip mining or aggregation)

was used earlier, e.g., in [3, 4] or [5]. All the evaluated

processing orders are depicted in Fig. 7.

A subset of the results of this experiment is shown in

Fig. 8 (vertical core on Intel), Fig. 9 (diagonal core on

Intel), Fig. 10 (vertical core on AMD) and Fig. 11 (diag-

onal core on AMD). On the Intel as well as AMD platforms

employed, all the horizontal orders perform in most cases

almost equally well. On the other hand, all the vertical

orders are clearly slower. This is the expected behavior

since the hardware prefetcher can prefetch the coefficients

(a) horizontal (b) horiz. strips (c) horiz. blocks

(d) vertical (e) vert. strips (f) vert. blocks

Fig. 7 Processing orders evaluated with both cores (vertical and

diagonal)

Fig. 8 Evaluation of processing orders. Vertical core on Intel

platform

Fig. 9 Evaluation of processing orders. Diagonal core on Intel

platform
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only to an extent of one 4 KiB page.2 The horizontal

processing order is the fastest one for both cores—the

diagonal and the vertical one. Note that these results are not

generic and they are dependent on the CPU cache param-

eters. The measurements performed suggest that the hori-

zontal order should be the best choice for platforms with

unknown cache parameters. A summarization of the mea-

surement for 58 megapixel images is shown in Tables 3

and 4. Note also that the implementations used are slightly

different from those used in the previous section.

5 Vectorizing cores

This section describes how several vertical as well as

diagonal 2� 2 cores are fused together to better exploit

SIMD instructions.

Quite a similar fusion was developed by Kutil in [11]

employing his version of vertical core (with two separated

coefficient scalings). He used a different memory layout

(accessing memory through packed words) and especially a

different variant of the single-loop approach (buffering up

to 16 whole rows). In contrast to Kutil’s work, we do not

access memory through packed words at all. Instead, we

access the input samples and the output coefficients

through distinct pointers. Thus, our algorithm is more

general and can be used for multichannel images or for data

in more than two dimensions.

A more detailed description of the individual cores

follows. The best-performing vectorized cores are shown in

Figure 12. Moreover, the complete image processing using

the 4� 4 vertical core is illustrated in Fig. 14.

5.1 2 9 2 vertical core

This core is not actually vectorized. Two adjacent vertical

and two subsequent adjacent horizontal iterations of the 1-

D vertical vectorization were combined into one compact

2-D core. In addition, a simple optimization was per-

formed. The coefficient scaling from the first vertical

Fig. 10 Evaluation of processing orders. Vertical core on AMD

platform

Fig. 11 Evaluation of processing orders. Diagonal core on AMD

platform

Table 3 Intel platform

Order Core

Vertical Diagonal

Full horizontal 8.3 7.1

Horiz. strips 27 9.2 8.1

Horiz. blocks 27 8.4 7.2

Full vertical 16.2 18.3

Vert. strips 27 11.5 10.1

Vert. blocks 27 12.0 10.7

The cache influence when using different 2-D processing orders.

Time in nanoseconds

The best results (fastest methods) are shown in bold

Table 4 AMD platform

Order Core

Vertical Diagonal

Full horizontal 8.9 9.1

Horiz. strips 27 10.2 10.4

Horiz. blocks 27 9.3 10.0

Full vertical 32.6 35.4

Vert. strips 27 14.2 15.2

Vert. blocks 27 14.5 15.7

The cache influence when using different 2-D processing orders.

Time in nanoseconds

The best results (fastest methods) are shown in bold

2 It is also possible to use 2 MiB Huge or even 1 GiB Large pages.

This possibility is not studied in this paper.
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iterations bubbled through the subsequent horizontal iter-

ations and was merged with their scalings. The result of a

core optimized in this way is exactly the same as the result

of a non-optimized version employing two independent

scalings. Although no SIMD instructions are used in the

core, some speedup can be expected thanks to the single-

loop approach as well as the hardware prefetching into

CPU caches. The core formed requires one four-tuple of

intermediate results per one pair of coefficients in one

direction. The total number of intermediate results is 2� 4

horizontally and 2� 4 vertically.

5.2 4 9 4 vertical core

This core consists of two parts. In the first part, two adjacent

vertical core iterations are performed on four independent

subsequent rows. This can be called 2� 4 vertical core

iterations. The 4� 4 matrix of intermediate results is now

transposed.3 In the second part, two adjacent core iterations

are performed on four subsequent columns. Finally, the

matrix of coefficients is scaled at once, as explained in the

previous core description. Note that the result need not be

transposed again. A similar 4� 4 core was also used in

[11], where the packed words are accessed directly in the

main memory. In his work, he have to read two 4� 4 blocks

at once and store them separately. Figure 13 explains how

the vectorization of the 4� 4 vertical core is actually

implemented. The SSE registers are outlined by a dotted

line. For simplicity, the buffers are omitted.

5.3 8 9 2 and 2 9 8 vertical cores

The cores are composed of two 8� 1 SIMD-vectorized

horizontal filterings followed by two 2� 4 adjacent vertical

core iterations. In the case of the 8� 1 horizontal filtering,

two (even and odd coefficients) whole packed words are

now transformed using SIMD instructions. This actually

evaluates four subsequent pairs of lifting coefficients at

once. This 8� 1 core was also used in [11], working

directly over the memory. The 2� 4 vertical core iterations

were explained in the 4� 4 vertical core description. These

are applied on even and odd coefficients from 8� 1 filter-

ings separately. No transposition is performed in this case.

5.4 2 9 2 diagonal core

This core merges two horizontal and two vertical SIMD-

vectorized 1-D diagonal cores. Thus, all operations of this

core are pure SIMD instructions (with the exception of

loads and stores of the coefficients). The optimization of

joint scaling operations as mentioned in the description of

the 2� 2 vertical core is also used here. This newly formed

core requires three four-tuples of intermediate results per

one pair of coefficients in one direction. The total number

of intermediate results is therefore 2� 12 horizontally plus

2� 12 vertically.

(a) (b)

Fig. 12 Best-performing vectorized cores. The image is processed in

blocks of the indicated size. For each block, the auxiliary buffers are

updated during the computation, as indicated by arrows

Fig. 13 4� 4 vertical core. In

2� 4 blocks, all operations of

the vertical vectorization are

performed over SSE vector reg-

isters instead of ordinary scalar

ones

Fig. 14 Complete image processing using the 4� 4 core. The

auxiliary buffers are shown on the left and top image edges. The light

gray cores have to be evaluated before evaluating the dark gray one

3 Using _MM_TRANSPOSE4_PS macro.
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5.5 6 9 2 and 2 9 6 diagonal cores

A series of three consecutive 2� 2 diagonal cores can be

combined together. At the end of each vertical core itera-

tion, three appropriate auxiliary buffers are exchanged.

After three such iterations, the meanings of these buffers

are again returned to the original states. It is therefore

possible to omit this buffer exchange at all if the following

diagonal cores are appropriately modified. Note that the

three buffers represent the left, center and right input

coefficients of the elementary lifting operations.

The performance of the above-described cores was

evaluated. In all cases, a raster scan pattern was used. The

results are summarized in Figs. 15 and 16 as well as in

Tables 5 and 6.

6 Symmetric extension

This section illustrates how the core approach can be

employed with the widely used symmetric border extension.

The symmetric border extension method assumes that the

input image can be recovered outside its original area by

symmetric replication of boundary values. There are a few

differences compared to the zero-padding extension pre-

sented in the Sect. 3. Depending on the platform, the sym-

metric extension can run slightly faster or slower, as shown

below. This extension, too, does not require placing the input

image into the enveloping frame. However, several condi-

tional branches are placed inside of the computing core. This

may or may not cause a performance degradation. Still,

special prolog or epilog parts are not needed.

The best-performing 4� 4 core using the vertical vec-

torization was chosen for this purpose. Initially, this core

was split into three consecutive parts. The first part loads

data from the memory and places them into auxiliary

variables.4 The subsequent second part performs the actual

calculation. Finally, the last part stores the results back in

the memory. The programmer should be able to fully reuse

the already written code. No special prolog or epilog parts

are required here.

The only change here is a simple memory addressing

treatment in the first and the last parts. In the first one, the

Fig. 16 Vectorized cores. Performance comparison on AMD

platform

Table 5 Intel platform

Core Time Speedup

Vertical 2� 2 8.3 2.6

Vertical 4� 4 4.4 5.0

Vertical 8� 2 4.7 4.7

Vertical 2� 8 4.5 4.9

diagonal 2� 2 7.2 3.0

Diagonal 6� 2 6.6 3.3

Diagonal 2� 6 6.6 3.3

The time is given in nanoseconds per one pixel. All the measurements

were performed on a 58-megapixel image

The best results (fastest methods) are shown in bold

Table 6 AMD platform

Core Time Speedup

Vertical 2� 2 8.8 5.4

Vertical 4� 4 4.6 10.2

Vertical 8� 2 5.1 9.2

Vertical 2� 8 5.1 9.2

Diagonal 2� 2 8.9 5.3

Diagonal 6� 2 6.7 7.0

Diagonal 2� 6 6.4 7.4

The time is given in nanoseconds per one pixel. All the measurements

were performed on a 58-megapixel image

The best results (fastest methods) are shown in bold

Fig. 15 Vectorized cores. Performance comparison on Intel platform

4 The __m128 data type.
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coefficient addresses pointing outside of an image region

are mirrored back inside it. In a similar way, the memory

accesses outside of the image in the last part are completely

discarded. As shown below, these changes do not signifi-

cantly affect the performance.

The whole image processing using a core modified in

this manner is shown in Fig. 17. The source and destination

areas may (in-place processing) or may not be identical.

The image must be virtually extended according to the

filter length (four coefficients in the case of the CDF 9/7

wavelet). A slightly faster core with a hardcoded memory

access pattern can be used in the central part of the virtu-

ally extended image. This central part is indicated by blue

color in Fig. 17. In the case of the in-place processing, a

code processing an area to the right and bottom of this

central part have to be written carefully. Otherwise, the

core might overwrite the area that will still be read.

The performance comparison with an implementation

using the zero border extension is plotted in Figs. 18 and

19. The vertical vectorization is used in all of the imple-

mentations. The naive implementation is shown only for

comparison. No significant difference in the performance is

observed.

The time in nanoseconds per one pixel and speedup

factors for a 58 megapixel image are given in Tables 7

and 8. Note that the implementations slightly differ from

the previous ones.

7 Parallelization

This section shows the effect of parallelization of the

above-discussed approaches. With the optimizations pro-

posed in the previous sections, both of the vectorizations

scale almost linearly with the number of threads.

The naive approach that uses horizontal and vertical 1-D

transform was parallelized using multiple threads. The

same was done with vectorized core single-loop approa-

ches (4� 4 vertical and 6� 2 diagonal, both with merged

Fig. 17 Image processing with the symmetric border extension. In

the central (blue) area, no core modification is required. The buffers

are shown on the sides of the virtual image

Fig. 18 Performance of the 4� 4 cores using different border

extensions (zero padding and symmetrization). Intel platform

Fig. 19 Performance of the 4� 4 cores using different border

extensions (zero padding and symmetrization). AMD platform

Table 7 Intel platform

Implementation Time speedup

Zero padding 4.4 5.0

Symmetrization 4.3 5.1

Different border extensions

Table 8 AMD platform

Implementation Time Speedup

Zero padding 4.5 10.5

Symmetrization 4.7 10.0

Different border extensions
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scaling). In the latter case, the image was split into several

rectangular regions assigned to different threads. In the first

case, this was done twice—for the horizontal and for the

vertical filtering. Both multi-threaded implementation were

written using the diagonal as well as the vertical vector-

izations, resulting in four implementations in total. The

performance comparison is shown in Figs. 20 and 21.

Both axes are shown in logarithmic scale. It can be seen

that the naive approach, even when parallelized, is, in fact,

always slower in comparison to just the single-threaded

core approach utilizing the vertical vectorization.

The original single-loop approach was not parallelized,

due to its irregular nature.

The parallelization of the single-loop core approach is

not as straightforward as the parallelization of the naive

approach. To produce correct results, each thread must

process a segment (several rows) of input image before its

assigned area. In this segment, no coefficients are written to

output. Therefore, this phase can be understood as a prolog.

Without the prolog, the threads would produce independent

transforms, each with zero border extension. The lengths of

prologs for vertical and diagonal vectorization are shown in

Table 11. The above fact leads to overlapping computation

and thus mutual thread synchronization (using barriers).

Moreover, no subsequent thread can start producing output

coefficients immediately at the segment beginning. Other-

wise, it would lead to overwriting a part of the segment

which is assigned to the corresponding previous thread (a

race condition). To resolve this issue, the initial part

(several first rows) of each thread output is buffered and

written out after the completion of the calculation of the

whole thread assigned area. This leads to a second barrier

synchronization. The sizes of buffers are shown in

Table 11. The latter of the described solutions (buffering of

output) is not necessary if the output is placed into a dis-

tinct memory area. On the other hand, using distinct

memory areas can lead to flooding the CPU cache with two

memory regions. The synchronization happens at certain

points (not each row), which are identified by arrows in

Fig. 22.

Finally, a summarizing comparison of parallelizations is

shown in Tables 9 and 10. The measurements were per-

formed on a 58-megapixel image. The single-threaded

algorithm is used as a reference one. Using the core

approach, both the vectorizations scale almost linearly with

the number of threads.

In summary, our method is very suitable for parallel-

ization and vectorization. In contrast to [11], the size of

auxiliary memory buffers does not grow with increasing

core size (for vertical vectorization, 4 rows for 2� 2 as

well as 4� 4 core). Moreover, the core approach can

SIMD-vectorize even 2� 2 core (diagonal vectorization).

Further, as opposed to [11], our method can handle arbi-

trary memory layouts and process the data in-place as well

as out-of-place; also, in case of the symmetric extension,

we have radically simplified the border treatment and the

overhead is now completely hidden in memory latencies.

Finally, our approach can be easily vectorized as well as

Fig. 20 Comparison of the parallelized naive and the parallelized

core approaches on Intel CPU

Fig. 21 Comparison of the parallelized naive and the parallelized

core approaches on AMD CPU

prolog

overlay

overlay

segment

Fig. 22 The synchronization barriers identified by arrows. They are

necessary only in conjunction with the in-place transform
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parallelized as opposed to [11], where parallelization using

threads is not considered at all.

8 Conclusion

We have presented a novel approach to the 2-D wavelet

lifting scheme, reaching speedups of at least 10� on AMD

and at least 5� on Intel platform for large data. Initially,

this approach was based on the fusion of the single-loop

and vertical as well as diagonal vectorization approaches.

We have proposed a simplification which drops the com-

plicated prolog and epilog phases. This allowed us to

easily merge scalings of two subsequent filterings into a

single one. The proposed core approach is simple to

implement in comparison with the classical single-loop

approach. With increasing image size (above 1 mega-

pixel), this approach becomes faster compared to the ori-

ginal one. We have also discussed a CPU-cache-friendly

processing order. For the memory layout that we used, the

horizontal processing order shows the best performance in

most cases. Furthermore, we have vectorized newly

formed cores to exploit the advantages of the SIMD

instruction set. In addition, we have illustrated how the

proposed core approach can be employed with the widely

used symmetric border extension. Finally, we parallelized

these vectorized approaches using threads and achieved a

speedup of nearly 40� on AMD and 15� on Intel, using 4

threads. The proposed approach scales almost linearly

with the number of threads.

All the methods compared in this paper were evaluated

using ordinary personal computers with x86 CPUs (Intel

Core2 Quad, AMD Opteron, Intel Core2 Duo, AMD Ath-

lon 64 X2).

Further work will focus on exploring the behavior of

proposed approaches on other architectures (vector pro-

cessors, many-core systems) or with other wavelets (dif-

ferent lifting factorizations).
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