
Single-Loop Approach to 2-D Wavelet Lifting with
JPEG 2000 Compatibility

David Barina Petr Musil Martin Musil Pavel Zemcik
Brno University of Technology

Czech Republic

{ibarina,imusilpetr,imusil,zemcik}@fit.vutbr.cz

Abstract—A novel approach to 2-D single-loop wavelet lifting
with compatibility to JPEG 2000 is presented in this paper.
A newly developed 2-D core of CDF 5/3 wavelet filter is
presented that, using a new sequence of operations, simplify
the design. Moreover, the proposed approach, that uses one
pass for 2-D transform, directly produces final output and
reduces significantly the need for storing intermediate results into
memory. All the proposed structures can be efficiently pipelined
in hardware. This paper describes the proposed approach, its
implementation in FPGA, cost of such implementation, and
brings an experimental evaluation as well as discussion of the
features of the approach.

Index Terms—Discrete wavelet transforms, Field pro-
grammable gate arrays.

I. INTRODUCTION

Discrete wavelet transform (DWT) is a frequently used

signal processing tool with ability to decompose the input

signal. In image processing, the transform is usually applied

involving the tensor product. In such case, the 2-D transform

is implemented as a sequence of 1-D transforms applied on

rows and columns. One level of such 1-D transform can be

computed utilizing a convolution with two complementary fil-

ters. However, on many architectures, a more efficient scheme

to calculate the transforms coefficients exists. This scheme is

called the lifting scheme and, in contrast to the convolution,

it benefits from sharing of intermediate results.

This work is dedicated to an effective implementation of

2-D DWT, namely the one used in JPEG 2000 standard.

JPEG 2000 is an image compression standard intended to

supersede previous JPEG standard based on the discrete cosine

transform. Unlike the original JPEG, the newer JPEG 2000 is

built over the discrete wavelet transform. Such decomposition

is usually performed on large image tiles. JPEG 2000 provides

lossless as well as lossy compression in a single compression

system. In its lossless mode, the standard utilizes a rounded

version of the biorthogonal CDF 5/3 wavelet filter usually

implemented using the lifting scheme.

Programmable logic devices (FPGAs) are one of the plat-

forms suitable for implementations of wavelet transformation.

From memory bandwidth point of view, they cannot be com-

pared to current GPGPU cards. Moreover, the advantage of

FPGA implementation is mainly in small embedded devices,

such as cameras, which are already based on FPGA and/or

have a fixed requirements on real-time processing, dimensions,

low resource and power consumption and where the GPGPU

or other platforms simply cannot be deployed.

The problem of efficient 2-D DWT implementation was

widely studied on various platforms including the FPGA

devices. Despite of this fact, so far we have not seen an

approach fusing the separated 1-D transforms into a single-

loop transform. Accordingly, we address such issue in this

paper. As a result, we have got a high performance architecture

capable of transform huge 2-D images in a single pass without

the need for storing intermediate results into memory. More

specifically, we have focused on a single scale decomposition

with the integer CDF 5/3 wavelet filter. In contrast to the other

works, we are dealing with the seamless transform over the

whole image instead small tiles.

In the following Section II, we briefly summarize the related

work and explain our motivation. In Section III, two single-

loop cores for 2-D wavelet lifting with CDF 5/3 wavelet

are proposed. Section IV describes the implementation details

related to the JPEG 2000 definition of the transform. Section V

presents the results achieved. Finally, Section VI summarizes

our work.

II. RELATED WORK

As mentioned above, the 1-D lifting scheme [1] is the

traditional scheme for computing the discrete wavelet trans-

form on many architectures. Unlike the convolution, the lifting

scheme requires fewer arithmetic operations per one transform

coefficient. The DWT calculated through this scheme can

be computed in several successive lifting steps. A naive

approach of the scheme calculation would directly follow these

lifting steps over the entire signal. However, this would be

very inefficient for long input signals because the complete

signal is accessed many times. Therefore, so called pipelined

computation [2] is usually used at this point.

In [3], the authors derived a family of biorthogonal spline

wavelets often referred to as CDF wavelets. In the first part

of the JPEG 2000 image coding system, two of them are

employed while implemented using the lifting factorization

from [1]. First one, CDF 9/7 wavelet over real numbers is

used in conjunction with the lossy image compression. The

second one, the integer-to-integer approximation of CDF 5/3

wavelet is used in the lossless mode. Because this paper is

focused on such transform, we review its lifting scheme here.

The 1-D input signal x ∈ (xm)0≤m<M of length M samples

2015 International Symposium on Computer Architecture and High Performance Computing Workshop

978-1-4673-8621-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SBAC-PADW.2015.10

31

2015 International Symposium on Computer Architecture and High Performance Computing Workshop

978-1-4673-8621-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SBAC-PADW.2015.10

31

is split into two disjoint groups comprising s and d coefficients

as

s(0)m = x2m, d(0)m = x2m+1,

where 0 ≤ 2m + 1 < M . From now on, the bracketed

number in superscript indicates the number of elementary

lifting operations performed on the given coefficient. This

notation is also used in the other papers, e.g. in [1].

Then, the transform defined in JPEG 2000 maps the input

pairs (d
(0)
m , s

(0)
m) onto the output ones (s

(1)
m−1, d

(1)
m) as

d(1)m = d(0)m −
⌊
s
(0)
m−1 + s

(0)
m

2

⌋
, (1)

s
(1)
m−1 = s

(0)
m−1 +

⌊
d
(1)
m−1 + d

(1)
m + 2

4

⌋
. (2)

Note, please, the rounding term +2 in (2).

Considering the 2-D signals, such as images, the transform

can be computed using several strategies. These are typically

referred to as the separable transform (row–column), the

block-based transform and the line-based transform. We will

now briefly review these strategies. Their detailed description

can be found, e.g., in [4].

The simplest strategy is to perform the separable transform

by subsequent horizontal and vertical passes over the whole

input image. This approach requires the use of large off-chip

memory blocks to store the intermediate results. Unlike this

strategy, the latter two do not require to store the intermediate

results into off-chip memory. The block-based and line-based

strategies perform the horizontal and vertical filtering onto

smaller image fragments. These fragments consist of rectan-

gular areas or small groups of lines in case of the block-based

or the line-based strategy, respectively.

In all the previous strategies, the output coefficients are

generated in chunks of various sizes. None of them generates

the coefficients continuously with granularity corresponding to

the essence of 2-D DWT. Note, please, that this elementary

granularity of DWT is a quadruple of LL, HL, LH, and HH

coefficients.

Let us now take a look at several papers on FPGA im-

plementation of 2-D DWT. In [5], the authors implemented

separable transform using the convolution rather than the

lifting scheme. However, in contrast with our work, their

implementation was able to deal with images of the size of

512 × 512 samples only, although, as the authors showed,

bigger tiles are also possible for the price of much higher

BRAM consumption. In [6], the authors proposed a line-based

architecture with focus on JPEG 2000. As in previous work,

the architecture was able to process the images of the size of

512× 512. However, the transform is implemented using the

lifting scheme. Another work focused on JPEG 2000 was done

in [7]. As in the previous two cases, this implementation can

deal with the tiles of the size of 512×512 pixels. Similarly, it is

build upon the lifting scheme and process images line by line.

Yet another line-based 2-D wavelet transform implementation

of JPEG 2000 was proposed in [8]. Again, it is based on

the lifting scheme. This time, the implementation deals with

256×256 images. Many other papers can be found. However,

none of them address the problem of efficient processing of

high resolution, e.g. Full HD or 4K UHD, images.

Recently, in [9], the authors formulated the single-loop core

approach to the 2-D wavelet lifting which generates the output

coefficients continuously. We will now briefly describe this

approach.

The heart of this approach is a 2 × 2 core of 2-D lifting,

which produces a quadruple of coefficients (LL, HL, LH and

HH). Compared with previous approaches, the core approach

requires two quotable changes in image processing. First, two

auxiliary buffers (one for each direction) are introduced in

order to exchange the intermediate results between adjacent

cores. For image of size of M ×N coefficients, the auxiliary

buffers must have a total size of roughly M+N packed words

(depending on the lifting scheme). Using the raster image

scan, the second (vertical) buffer is not required which reduces

the size of auxiliary buffer to roughly M packed words.

Considering the FPGAs, it is feasible to hold this buffer in the

on-chip memory. The core itself produces resulting coefficients

with a lag of F samples in both directions (depending on the

lifting scheme). Second, the input image is virtually extended

in order to deal with such lag and properly calculate the

symmetric (or other) border extensions. This results in a slight

increase in the overall computational cost.

However, as the result, every quadruple of input pixels is

visited only once while the output coefficients are produced

immediately. The particular form of the core is now a subject

of our research. For completeness, let us note that the core

approach is not necessarily mutually exclusive with the line-

based and block-base strategies described above.

III. CORES

In this section, we propose two single-loop 2-D DWT cores

suitable for hardware implementation in FPGAs. These cores

can be used as standalone computing units or incorporated into

the existing block-based or line-based architectures.

Now, let consider the 2-D input signal x ∈
(xm,n)(0,0)≤(m,n)<(M,N) of size M × N samples. It is

initially split into four disjoint groups (even and odd samples

in the horizontal as well as vertical direction) as

a(0)m,n = x2m,2n, v(0)m,n = x2m,2n+1,

h(0)
m,n = x2m+1,2n, d(0)m,n = x2m+1,2n+1,

where (0, 0) ≤ (2m+1, 2n+1) < (M,N). At this point, the

a samples are referred to as approximation coefficients, the

v, h and d as vertical, horizontal and diagonal coefficients,

respectively. The single-loop approach operates over the input

samples x and instantly produces the coefficients (a,v,h,d).
The core of this approach is a streaming unit which consumes

the input signal and produces the resulting coefficients. Such

core needs to store the intermediate results in auxiliary buffers

between consequent iterations. Due to the pair-wise nature of

3232

s(0)d(0)s(0) d(0) s(0) d(0) s(0) d(0)

s(1) d(1) s(1) d(1) s(1) d(1)s(1) d(1)

Figure 1. Implementation of CDF 5/3 filter with the highlighted core. Circles
represent the results of operations. The notation in accordance with [1].

the discrete wavelet transform, the smallest possible 1-D core

has size of 2 samples. In 2-D case, the minimum possible core

size is inherently 2× 2 pixels.

In more detail, the core transforms the vector x into y.

These two vectors are composed from the 2 × 2 fragment of

input signal and some specific intermediate results as

x =
[

a
(0)
m,n h

(0)
m,n v

(0)
m,n d

(0)
m,n · · ·]T

y =
[

a
(.)
m−1,n−1 h

(.)
m,n−1 v

(.)
m−1,n d

(.)
m,n · · ·]T (3)

The transform in 2-D is defined by the tensor product of 1-D

transforms. It is, therefore, necessary to explain the mapping

of 1-D lifting scheme to the 2-D one. The (am,n, hm,n) and

(vm,n, dm,n) pairs correspond to the (sm, dm) pair for the hor-

izontal filtering. Analogously, (am,n, vm,n) and (hm,n, dm,n)
pairs correspond to the (sn, dn) pair in the vertical direction.

Please keep this in mind for the rest of this paper.

At the beginning of our work, we adapt the vertical 2 × 2
core from [9] to the CDF 5/3 transform. As in [1], we define

CDF 5/3 lifting scheme using constants α = −1/2 and β =
1/4. The adaptation is fairly straightforward. The resulting

core has 4 independent stages suitable for hardware pipelining.

These stages are shown in more detail in Figure 2. The first

two of them corresponds to horizontal filtering and does not

need to access the coefficients in the auxiliary buffer. The latter

two corresponds to vertical filtering and needs to exchange the

data through the on-chip auxiliary buffer. The core consists of

16 multiply–accumulate (MAC) operations in total. The length

of the longest data path in both stages is 2 operations.

The individual stages correspond to predict PH
α , PV

α and

update UH
β , UV

β steps in horizontal and vertical direction,

respectively. The core can be then described in matrix notation

as

y = UV
β PV

α UH
β PH

α x. (4)

The computation inside the horizontal UH
β PH

α may be

implemented as follows. For better understanding, the 2 × 1
slice of computation is depicted in Figure 1.

d(1)m,n = d(0)m,n + α(v
(0)
m−1,n + v(0)m,n) (5)

h(1)
m,n = h(0)

m,n + α(a
(0)
m−1,n + a(0)m,n) (6)

v
(1)
m−1,n = v

(0)
m−1,n + β(d

(1)
m−1,n + d(1)m,n) (7)

a
(1)
m−1,n = a

(0)
m−1,n + β(h

(1)
m−1,n + h(1)

m,n) (8)

s(0) d(0) s(0) d(0) s(0) d(0)d(0)s(0)

s(2) d(1) s(2) d(1) s(2) d(1)s(2) d(1)

s(1)

Figure 3. The 1-D implementation of CDF 5/3 filter with the reduced
latency. The circles in different colour correspond to s(1) coefficients from
(31). The core is highlighted.

Analogously, the vertical UV
β PV

α follows.

v
(2)
m−1,n = v

(1)
m−1,n + α(a

(1)
m−1,n−1 + a

(1)
m−1,n) (9)

d(2)m,n = d(1)m,n + α(h
(1)
m,n−1 + h(1)

m,n) (10)

a
(2)
m−1,n−1 = a

(1)
m−1,n−1 + β(v

(2)
m−1,n−1 + v

(2)
m−1,n) (11)

h
(2)
m,n−1 = h

(1)
m,n−1 + β(d

(2)
m,n−1 + d(2)m,n) (12)

As a second step, we have tried to reduce the depth of the

calculation per the output quadruple. The key idea of this is

to detach a part of the calculation of the current core which

does not depend on the current inputs and merge this part

into calculations in the preceding core. During this procedure,

we get operations with new scaling factors. Luckily, these are

again powers of two as they are composed of the original

factors. Finally, we got the core with two stages – one for

horizontal and one for vertical filtering. The stages are shown

in Figure 4. We have also introduced new intermediate results

which replaced part of the original results in the auxiliary

buffer. Therefore, the memory consumption of this buffer

remains untouched. The newly formed core requires 28 MACs

per output quadruple. The length of the critical path in each

stage is 2 operations. Thus, the total depth of the entire

calculation is smaller (as the number of subsequent stages was

halved) than in the original case. In the matrix notation, we

have got

y = MV
α,βM

H
α,βx. (13)

In this case, the horizontal MH
α,β is described below. For

better understanding, see Figure 3.

v(1)m,n = v(0)m,n + αβv
(0)
m−1,n

+ βd(0)m,n + 2αβv(0)m,n

(14)

v
(2)
m−1,n = v

(1)
m−1,n + βd(0)m,n + αβv(0)m,n (15)

d(1)m,n = d(0)m,n + αv
(0)
m−1,n + αv(0)m,n (16)

a(1)m,n = a(0)m,n + αβa
(0)
m−1,n

+ βh(0)
m,n + 2αβa(0)m,n

(17)

a
(2)
m−1,n = a

(1)
m−1,n + βh(0)

m,n + αβa(0)m,n (18)

h(1)
m,n = h(0)

m,n + αa
(0)
m−1,n + αa(0)m,n (19)

3333

PH
α

DDR[m,n]

d
(0)
m,n

a
(0)
m,n

v
(0)
m,n

h
(0)
m,n

d
(0)
m,n

h
(1)
m,n

d
(1)
m,n

a
(0)
m−1,n

v
(0)
m−1,n

a
(0)
m,n

v
(0)
m,n

a
(0)
m−1,n

v
(0)
m−1,n

a
(0)
m,n

v
(0)
m,n

h
(0)
m,n

UH
β

h
(1)
m,n

a
(0)
m−1,n

d
(1)
m,n

v
(0)
m−1,n

d
(1)
m,n

h
(1)
m,n

d
(1)
m,n

d
(1)
m−1,n

a
(1)
m−1,n

v
(1)
m−1,n

h
(1)
m,nh

(1)
m−1,n

DDR[m,n]
d
(2)
m,n

v
(2)
m−1,n

a
(2)
m−1,n−1

h
(2)
m,n−1

UV
β

d
(2)
m,n

a
(1)
m−1,n−1

d
(2)
m,n

h
(1)
m,n−1

v
(2)
m−1,n

d
(2)
m,n

v
(2)
m−1,n

d
(2)
m,n−1

a
(2)
m−1,n−1

h
(2)
m,n−1

BRAM[m]

v
(2)
m−1,n

v
(2)
m−1,n−1

PV
α

d
(1)
m,n

h
(1)
m,n

d
(2)
m,n

a
(1)
m−1,n

v
(1)
m−1,n

v
(2)
m−1,n

a
(1)
m−1,n−1

h
(1)
m,n−1

BRAM[m]

h
(1)
m,n

a
(1)
m−1,n

a
(1)
m−1,n−1

h
(1)
m,n−1

d
(2)
m,n

v
(2)
m−1,n

d
(2)
m,n−1

v
(2)
m−1,n−1

h
(1)
m,n

a
(1)
m−1,n

a
(1)
m−1,n−1

h
(1)
m,n−1

Figure 2. The four-stage separable core with 16 additions only. The arrows pointing to the right are linked to the arrows coming in from the left.

MH
α,β

d
(0)
m,n

a
(0)
m,n

v
(0)
m,n

h
(0)
m,n

d
(0)
m,n

a
(1)
m,n

h
(1)
m,n

d
(1)
m,n

a
(1)
m−1,n

a
(2)
m−1,n

v
(2)
m−1,n

MV
α,β

d
(1)
m,n

h
(1)
m,n

d
(2)
m,n

a
(2)
m−1,n

v
(2)
m−1,n

a
(3)
m−1,n

v
(3)
m−1,n

a
(3)
m−1,n−1

a
(4)
m−1,n−1

h
(3)
m,n−1

d
(2)
m,n

v
(3)
m−1,n

a
(4)
m−1,n−1

h
(3)
m,n−1

BRAM[m]

h
(2)
m,n

h
(1)
m,n

a
(2)
m−1,n

h
(2)
m,n−1

a
(2)
m−1,n−1

h
(1)
m,n−1

v
(1)
m,n

a
(0)
m,n

v
(0)
m,n

a
(0)
m−1,n

v
(0)
m−1,n

v
(1)
m−1,n

a
(0)
m,n

v
(0)
m,n

h
(0)
m,n

a
(3)
m−1,n−1

h
(2)
m,n−1

a
(2)
m−1,n−1

h
(1)
m,n−1

a
(3)
m−1,n

h
(2)
m,n

a
(2)
m−1,n

h
(1)
m,n

DDR[m,n]DDR[m,n]

Figure 4. The two-stage separable core with 28 additions.

Analogously, the vertical MV
α,β is defined in the following

relations.

a
(3)
m−1,n = a

(2)
m−1,n + αβa

(2)
m−1,n−1

+ βv
(2)
m−1,n + 2αβa

(2)
m−1,n

(20)

a
(4)
m−1,n−1 = a

(3)
m−1,n−1 + βv

(2)
m−1,n + αβa

(2)
m−1,n (21)

v
(3)
m−1,n = v

(2)
m−1,n + αa

(2)
m−1,n−1 + αa

(2)
m−1,n (22)

h(2)
m,n = h(1)

m,n + αβh
(1)
m,n−1

+ βd(1)m,n + 2αβh(1)
m,n

(23)

h
(3)
m,n−1 = h

(2)
m,n−1 + βd(1)m,n + αβh(1)

m,n (24)

d(2)m,n = d(1)m,n + αh
(1)
m,n−1 + αh(1)

m,n (25)

IV. IMPLEMENTATION

In the previous part, we have proposed two single-loop

cores suitable for CDF 5/3 wavelet. Here, we describe the

implementation in full detail including correct JPEG 2000

rounding.

The simplest four-stage separable core implements the equa-

tions (1) and (2). We have rewritten these equations in order

to utilize the input carry bit of the adders.

d(1)m = d(0)m −
⌊
s
(0)
m−1 + s

(0)
m

2

⌋
(26)

s
(1)
m−1 =

⌊
4s

(0)
m−1 + d

(1)
m−1 + d

(1)
m + 1 + 1

4

⌋
(27)

We have decided to implement the transform using 16-bit

3434

signed integers. Such width is sufficient for few levels of DWT

as required by JPEG 2000 standard. The stages reflects the

horizontal and vertical predicts and updates, thus we have 4

stages. The auxiliary coefficient between the horizontal stages

are passed in registers. In contrary, the vertical intermediate

results are exchanged through the Block RAM (BRAM). As

all the factors in CDF 5/3 are powers of two, the complete

transform consists of 16 additions per output quadruple only.

The implementation of the two-stage core is more sophis-

ticated. At the beginning, we will focus on 1-D transform.

Considering the core approach, the biggest problem with

the lossless DWT as required by JPEG 2000 is the correct

rounding of the sm−1 coefficient. Now, the sm−1 coefficient

is computed in two stages. Consequently, we had to distribute

a rounding flag (or a rounding bit) from the first stage of

the core to the second one. As the sm−1 is computed in

two stages, we introduced auxiliary s
(1)
m−1 coefficient which

is passed between the two stages. The final coefficients are

then denoted (s
(2)
m−1, d

(1)
m).

To explain the two-stage rounding we must first establish

the following identity. Let Z denote the set of integers, 2Z+1
denote the set of odd integers, and p, q ∈ Z. One can perform

the following expansion⌊
p+ q

2

⌋
= �p/2�+ �q/2�+ C2(p, q), (28)

where C2 is a correction term is defined as

C2(p, q) =

{
1 : p ∈ 2Z+ 1 ∧ q ∈ 2Z+ 1

0
. (29)

Using this identify, we can rewrite the original 1-D transform

as follows.

d(1)m = d(0)m −
⌊
s
(0)
m−1 + s

(0)
m

2

⌋
(30)

s(1)m = 4s(0)m − 2�s(0)m /2�+ d(0)m − �s(0)m−1/2� (31)

bm = 1− C2(s
(0)
m−1, s

(0)
m) (32)

s
(2)
m−1 =

⌊
s
(1)
m−1 + d

(0)
m − �s(0)m /2�+ bm−1 + bm

4

⌋
(33)

As in the previous case, the horizontal intermediate values

are passed in registers and the vertical ones in BRAM. The

core requires 28 additions per output quadruple. Note that the

calculation of bm is implemented in a single NAND gate.

V. EVALUATION

We have implemented both of the cores described above.

This section brings an experimental evaluation as well as

discussion of the features of the approach.

The wavelet engine was experimentally synthesized in a

Xilinx Zynq XC7Z045 FPGA and evaluated on the Xilinx

ZC7061 board (with DDR3 at 1066 MHz). The engine was

1http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

small tile Full HD 4K UHD
resolution 512× 512 1920× 1080 3840× 2160
theoretical framerate 3698 477 120
framerate with DRAM 2670 338 84

Table I
THE FRAMERATES ACHIEVED FOR VARIOUS IMAGE RESOLUTIONS.

synthesized for several image resolutions (as seen in Table I)

that merely differ in the BRAM size only to allow comparison

with other papers and also to show that the core is able to

process Full HD video (1080p, 60 Hz) faster than in real-

time. As it could be seen, the core is ready to process image

resolution of up to 4K UHD with the outlook to even higher

resolutions without need of any fundamental changes. The

computational engine has standardized AXI-Stream interfaces.

The input expects streamed video frames in the predefined

resolution, the output stream is generating interlaced coeffi-

cients of wavelet transform that can be easily split into four

separate data streams for further multi-scale decomposition.

We would like especially to highlight the ability to process

the video stream without the need to use external memory

for intermediate results. The design includes mirroring on the

image edges which is not performed by wavelet core itself, but

by the engine, which encapsulates the core. The engine itself

then represents an independent block, which can be used in

more complex system or which can be easily duplicated and

chained to perform more levels of wavelet transform of one

image.

Both of the implemented cores are fully pipelined. First of

the cores has latency of 2 clock cycles and it represents the

four-stages separable wavelet transform from Figure 2. The

second core has latency of 4 clock cycles and it represents the

two-stages separable wavelet transform from Figure 4.

small tile Full HD 4K UHD
FF 328 332 338
LUT 239 247 257
BRAM 1 2 4

Table III
THE RESOURCES CONSUMED BY THE 4 CLOCK LATENCY CORE.

small tile Full HD 4K UHD
FF 280 282 284
LUT 418 440 426
BRAM 1 2 4

Table IV
THE RESOURCES CONSUMED BY THE 2 CLOCK LATENCY CORE.

The wavelet core itself requires just a very small fraction of

ZC706 resources, as shown in Table III and in Table IV. As it

could be predicted, first solution with 2-stages pipeline leads in

higher LUT requirements and less demand for Flip-Flops. At

the opposite the 4-stage pipeline consumes more Flip-Flops

and smaller amount of LUTs. The requirements for whole

wavelet engine are summarized in Table V; besides the core

itself, it shows resource demands for engine performing row

and column edge mirroring. According to JPEG 2000 standard,

the four image lines and columns have to be mirrored, this

consumes the extra four BRAMs in case of Full HD resolution.

3535

architecture device BRAM [bits] clocks/pel time [ms] FF/reg.
Dillen et al. (2003) [8] VirtexE1000-8 50K 0.50 1.20 2542
Descampe et al. (2004) [7] Virtex-II XC2V6000 N/A 0.60 1.75 N/A
Seo et al. (2007) [6] Altera Stratix 128K 2.64 6.02 N/A
Zhang et al. (2012) [5] Virtex-II Pro XC2VP30-7 6× 18K 0.50 0.97 1059
proposed Zynq XC7Z045 1× 36K 0.26 0.27 280

Table II
COMPARISON OF VARIOUS FPGA IMPLEMENTATION FOR TILES OF SIZE 512× 512. THE PROCESSING TIME AND CLOCKS PER PIXEL WERE PROJECTED

TO THE UNIFORM IMAGE SIZE. THE BEST RESULTS ARE IN BOLD.

core FF LUT BRAM
latency 4 441 (0.1 %) 399 (0.18 %) 6 (1.1 %)
latency 2 391 (< 0.1 %) 592 (0.27 %) 6 (1.1 %)

Table V
RESOURCES CONSUMED FOR FULL HD RESOLUTION ON ZC706 BOARD.

The overall performance of wavelet engine is summarized

by Table I. It incorporates the theoretical and real performance

of the engine with relation to image resolution. Both of the

wavelet cores have the same throughput – they differ just in

output latency. The core is able to process 4 input samples in

one clock cycle, producing 4 output samples and the important

fact also is that each of the samples needs to be fetched from

an external memory and stored into the external memory just

once as the design is single pass streaming 2-D DWT unit. The

computation has to also be performed on the mirrored image

edges that are enlarged by 4 pixels in each direction. The

theoretical performance was calculated for maximum speed

250 MHz with respect to edge mirroring, assuming ideal

situation that input data are always available. The practical

performance was measured on hardware Xilinx ZC706. There

it could be observed that the RAM throughput is essential for

the overall performance.

The overall comparison with the selected architectures is

shown in Table II. We have made all the used source codes

(including VHDL as well as the reference codes in C language)

freely available.2

VI. CONCLUSION

We proposed two cores that allow computing the 2-D

discrete wavelet transform on a streaming basis. Moreover, we

have implemented two high performance engines as standalone

processing units. The cores can also be incorporated into some

existing applications, namely those using the block-based or

the line-based scheduling. Our implementations are built using

the integer-to-integer CDF 5/3 wavelet filter with JPEG 2000

standard compatibility. The cores allow for seamless transform

calculated over large resolution images instead the small tiles.

We have developed and evaluated the engine with both

of the wavelet cores on Xilinx ZC706 board. The engine

is small and independent block capable of stream video

processing; thus it can be easily duplicated and chained to

perform more levels of wavelet transform on one image.

Our stream processing approach very efficient from the data

2http://www.fit.vutbr.cz/research/prod/?id=433

throughput point of view. It does not require any external RAM

memory, all the necessary intermediate results are effectively

stored in local BRAMs. The computation pipeline is simple

and allows for high operational frequency (up to 250 MHz)

with very low resource consumption. Moreover, the proposed

architecture reduces control logic complexity as the horizontal

and vertical passes are fused into the single pass. All these

features makes this engine useful as a part of pipeline in

real-time image processing applications, for example tone-

mapping, JPEG 2000 compression, etc.

Future research includes experimenting with multi-scale

transforms, different wavelet bases as well as exploitation of

the transforms in applications.

ACKNOWLEDGEMENT

This work has been supported by the IT4Innovations Centre

of Excellence (no. CZ.1.05/1.1.00/02.0070) and the TACR

Competence Centres project V3C – Visual Computing Com-

petence Center (no. TE01020415).

REFERENCES

[1] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting
steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp.
247–269, 1998. DOI:10.1007/BF02476026

[2] C. Chrysafis and A. Ortega, “Minimum memory implementations of the
lifting scheme,” in Proceedings of SPIE, Wavelet Applications in Signal
and Image Processing VIII, ser. SPIE, vol. 4119, 2000, pp. 313–324.
DOI:10.1117/12.408615

[3] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal
bases of compactly supported wavelets,” Communications on Pure
and Applied Mathematics, vol. 45, no. 5, pp. 485–560, 1992.
DOI:10.1002/cpa.3160450502

[4] M. E. Angelopoulou, K. Masselos, P. Y. K. Cheung, and Y. Andreopoulos,
“Implementation and comparison of the 5/3 lifting 2D discrete wavelet
transform computation schedules on FPGAs,” Journal of Signal Process-
ing Systems, vol. 51, no. 1, pp. 3–21, 2008. DOI:10.1007/s11265-007-
0139-5

[5] C. Zhang, C. Wang, and M. O. Ahmad, “A pipeline VLSI architecture
for fast computation of the 2-D discrete wavelet transform,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 8,
pp. 1775–1785, Aug. 2012. DOI:10.1109/TCSI.2011.2180432

[6] Y.-H. Seo and D.-W. Kim, “VLSI architecture of line-based lifting wavelet
transform for motion JPEG2000,” IEEE Journal of Solid-State Circuits,
vol. 42, no. 2, pp. 431–440, Feb. 2007. DOI:10.1109/JSSC.2006.889368

[7] A. Descampe, F. Devaux, G. Rouvroy, B. Macq, and J.-D. Legat, “An
efficient FPGA implementation of a flexible JPEG2000 decoder for digital
cinema,” in 12th European Signal Processing Conference (EUSIPCO),
2004.

[8] G. Dillen, B. Georis, J.-D. Legat, and O. Cantineau, “Combined line-
based architecture for the 5-3 and 9-7 wavelet transform of JPEG2000,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 13,
no. 9, pp. 944–950, Sep. 2003. DOI:10.1109/TCSVT.2003.816518

[9] D. Barina and P. Zemcik, “Vectorization and parallelization of 2-
D wavelet lifting,” Journal of Real-Time Image Processing, 2015.
DOI:10.1007/s11554-015-0486-6

3636

