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Abstract

The segmentation of sensory data of various domains is often crucial pre-processing step in many computer vision methods and
applications. In this work, we propose a method that leverages the quantization of local feature’s distributions for the depth and
the temporal information. Three variants of the segmentation method is designed and evaluated reflecting various data domains:
space (color and texture), temporal (motion) and depth domain. Each variant was tested on appropriate dataset showing the usability
of designed method for applications like areal-image analysis, hand detection and moving-people detection. The pilot experiments
shows the characteristics of the approach and computational costs of designed variants.
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1. Introduction

Image segmentation is a computer vision problem of divid-
ing an input image into multiple regions which correspond to
different objects in the image. The assumption is that individ-
ual objects and background differ in characteristic such as color,
texture, shape, location or motion. Some kinds of this process
can be found in applications involving object detection, clas-
sification and recognition. Importance of the problem lies in
the fact that this approximation can speed up and improve next
higher-level processing steps.

Existing approaches differ in many aspects, e.g. accuracy,
stability, computational costs etc. and can be generally divided
into threshold based, edge based, region based and methods
based on clustering. Recent scientific results indicate the ef-
fectivity of reduction of data dimensionality and approximated
representation in sensory data processing approaches. The local
features extracted from data of various domains are statistically
analyzed and quantized decreasing the computational demands
in further processing of these data. The similar approach is
widely known as bag-of-features based on visual vocabulary in
image-retrieval or image-classification domain.

Depth data segmentation become one of the hot topics in
robotics field, mostly driven by a new era of cheap depth sen-
sors (Kinect 1, resp. 2, ASUS xTion Pro etc.) available on
the market in last years. The sensors provide the perception
systems with the depth information of pixels in the close en-
vironment. The segmentation of depth data is again important
pre-processing stage for many applications like: object classifi-
cation, hand detection, scene interpretation etc.

In this paper, existing methods for segmentation are dis-
cussed in more details in section 2. Section 3 presents the pro-
posed method for data segmentation and section 4 describes
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features and metrics proposed for different data domains. Re-
sults of the pilot experiments showing methods’ characteristics
and computational cost are presented in section 5.

2. Related works

Numerous methods for image and video segmentation ex-
ist. However, the idea and application of depth information in
computer vision applications have become popular recently.

Blas et al. [1] convert input image into CIELAB color space
and represent a texture using the local surroundings, which is
similar to the Local Binary Patterns (LBP) method. They clus-
ter the data to textons using k-means algorithm. Thanks to
the calculation of histograms over textons, they are able to rep-
resent the ”mixed terrain”. Finally, the histogram profiles are
merged using the Earth Mover Distance (EMD). The method
achieves best results using a 3x3 window for extracting texture
information and 32 × 32 window for extracting histograms.

Greggio et al. [2] described unsupervised algorithm that is
capable of learning finite mixture model from multivariate data
online. The method is based on the expectation-maximization
algorithm to Gaussian Mixtures. The segmentation starts with
only one mixture component and progressively adapts the mix-
ture by adding new components when necessary. There are de-
fined split and stopping criteria.

Taylor and Cowley [3] represent pixels of the input im-
age by simple color descriptors. Given this set of feature vec-
tors, the segmentation employs a set of randomly chosen split-
ting planes. The planes are used for hashing each region to
n-bit code. After finding the local maximum (cluster centers) in
the set of the hash codes, the vectors are assigned to the clos-
est region based on Hamming distance. The described method
achieves good results and low computation time.

The segmentation presented by Chamorro-Martı́nez et al. [4]
is based on a growing region algorithm. The region is used as

Preprint submitted to Computers & Graphics March 21, 2016



a fuzzy subset of pixels, where every pixel has a membership
degree to that region. The authors use the HSI color space and
membership for the fuzzy region is based on distance.

Rao et al. [5] described a method of segmentation, where
the authors work with CIELAB color model. They use tex-
ture descriptors based on a pixel neighborhood. The vectors are
coded based on minimal length of descriptors and the bound-
aries are coded using the Freeman chain code. The segmenta-
tion is then based on a hierarchical and iterative region-merging
process.

Many works that deal with the depth data segmentation task
mainly addressing the requirements for stability and low com-
putational demands. Pulli and Pietikäinen [6] apply normal de-
composition in their approach. They explore various techniques
of range data normal estimation (comparing their performance
and accuracy on clean as well as noisy datasets). The tech-
niques include quadratic surface least squares or LSQ planar
fitting. A least-trimmed-squares method is utilized for compari-
son. Hulik et al. [7] used similar approach and combined it with
the improved tile-RANSAC approach of Ying Yang and För-
stner [8] and introduced plane-prediction that improves the ef-
ficiency of the previous methods keeping the methods’ accu-
racy. An alternative approach to plane detection in point, pre-
sented by Borrmann et al. [9], is based on 3D Hough trans-form.
Dube and Zell [10] also employ randomized Hough transform
for real-time plane extraction.

The goal of our work is to leverage the quantization step
to computed distribution of local data features for the data seg-
mentation tasks. We present the general method and propose its
application for three data domains: space (color and texture),
temporal (motion) and depth domain. We tested the methods’
variants and report the characteristics of the approach and com-
putational costs on applications like areal-image analysis, hand
detection and moving-people detection.

The other goal of this work is to use presented segmentation
algorithm for real time processing. Therefore, it was necessary
to improve the execution time of the most consuming part of
the method, while preserving its accuracy.

3. Segmentation algorithm

The general idea of segmentation algorithm is to extract
and quantize the local feature vectors. We call them also tex-
tons [1] and merge them using their local distribution analy-
sis into larger segments. Steps of segmentation algorithm are
shown in Figure 1.

Figure 1: Segmentation pipeline

The local feature extraction method varies for different
data domains and is discussed in details in the next section.

In general, the feature vectors for each pixel are extracted using
window and quantized into textons. The extraction is done by
square window and the quantization is based on clustering of
extracted local features. The obtained cluster centers are used
as textons where its number depends on the number of clusters
obtained from a clustering algorithm. The labels, which cor-
responds to indexes of this clusters/textons, are then assigned
to each pixel of image based on Euclidean distance in the fea-
ture space. For this purpose we use k-means++ [11] algorithm
where each pixel is assigned to the closest texton.

The matrix of indexes from previous part serves for describ-
ing the local image parts by histograms of textons. The calcula-
tion of the histogram profiles is optimized by constructing in-
tegral images for each of the texton cluster, so the computation
takes only four addition operations for every texton. The his-
tograms are extracted by window of the adjustable size where
the window center is a pixel, for which this histogram is com-
puted. The size is significantly larger than size of the window
used for the local feature extraction and implicitly we work with
the window of size 31 × 31 pixels. By this extraction it is pos-
sible to capture a density of texture elements.

The histogram features are statistically analyzed again, but
in contrast to previous quantization process, we aim to use as
low reasonable cluster amount as possible. This process re-
sults in local histogram profiles. The number of extracted his-
togram profiles depends again on number of clusters initially
chosen in the k-means++ [11] clustering algorithm. Generally,
this process results in over-segmented image where the over-
segmentation depends on number of extracted histogram pro-
files.

Merging is the last and the optional step of segmentation
process where is an effort to improve results by merging these
over-segmented areas. We experimented with various ways (Eu-
clidean distance, Earth Movers Distance, Histogram correla-
tion, Bhattacharyya distance and others) that could achieve bet-
ter results. The main problem was to find a threshold, which
would lead to the ideal merging.

Based on experiments, we chose a method based on dis-
tance matrix as the most appropriate one. This method differs
from method used in [1] which is based on the Earth Movers
Distance and is computationally more expensive. The matrix
is used to merge similar clusters and the threshold is computed
by approximation with the Cauchy-Lorentz distribution. It was
determined by analyzing distances and using polynomial ap-
proximation:

threshold = 0.0311 + 0.1723 · exp−4·log 2·( max−0.6015
0.1108 )2

(1)

where max is a maximum value of the distance matrix. The dis-
tance matrix is n × n hollow matrix where n is number of his-
togram profiles.

We use the Euclidean metric to compute distance of two
histogram profiles. While there are more than two profiles,
two profiles with the lowest distances below this threshold are
merged to one and its number and the size of the distance matrix
is reduced. The distances between merged and other profiles are
updated as follow
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d(A ∩ B,C) = min(d(A,C), d(B,C)) (2)

where d is distance, A, B, C are histogram profiles and A ∩ B is
result of merging profiles A and B.

4. Features extraction variants

The type of segmentation differs in feature extraction pro-
cedure reflecting the characteristics of particular data domains.
Three feature types have been proposed for each of targeted
data domain. Firstly, we describe a texture based segmentation
for color images that was introduced by [1] and that we used
to design our method variants for other data domains: motion
based segmentation for image sequences and RGB-D/T seg-
mentation combining all color, depth and motion information.

4.1. Texture based segmentation
The Texture based segmentation in our work is used as fun-

damental approach [1] for evaluation and comparison with our
newly proposed variants for depth and temporal data. The input
image is converted from the RGB color space to the CIELAB
model first. This model defines the brightness of the color
L ∈ 〈0, 100〉, the color position between red and green a ∈
〈−127, 127〉 and the color position between yellow and blue
b ∈ 〈−127, 127〉. This values are used as parts of the feature
vector that is extracted via window of size 3 × 3 pixels.

Each central pixel is represented by given L, a, b values of
the CIELAB color model and the pixel neighborhood is repre-
sented as weighted difference between L values of surrounding
pixels and center pixel. It means that each pixel is described by
11-dimensional feature vector.

L1 L2 L3

L8 Lc L4

L7 L6 L5

→ p(i, j) =



W1 · Lc

W2 · ac

W2 · bc

W3 · (L1 − Lc)

.

.

.

W3 · (L8 − Lc)



(3)

The equation 3 presents the process of local feature extrac-
tion (same as in [1]) where weight W1 is equal to 1

2 , W2 to 1 and
W3 is equal to 1

2 . The color of center pixel is defined by values
Lc, ac and bc. The Euclidean norm in 11-dimensional space is
then used as the distance between the feature vectors. The norm
is defined as follow

dL = (W1 · (Lci − Lc j))2

dab = (W2 · (aci − ac j))2 + (W2 · (bci − bc j))2

ds =

N∑
k=1

(W3 · (Lki − Lci − Lk j + Lc j))2

Dtexture =
√

dL + da + db + ds (4)

where i and j are indexes of two vectors, k is index of surround-
ing pixels and N value depends on the size of the neighborhood
(equals 8 for 3 × 3 window).

4.2. Motion segmentation
In this type of segmentation, the features are extracted by

computation of a dense optical flow using the Gunnar Farneback
algorithm [12]. This two-frame motion estimation algorithm
computes flow by approximating frames by quadratic polyno-
mials and constructing global shift. It uses the Gaussian aver-
aging window of size 2 × 2 pixels with σ = 1.1. We define 5
iterations and 5×5 neighborhood to find polynomial expansion
in each pixel.

The output of this process is a flow between two frames,
from which magnitude and angle is obtained, after converting
into polar coordinates. Each pixel of the image is described by
2-dimensional feature vector defined as

p(i, j) =

Rc

αc

 (5)

where Rc is magnitude and αc is angle of the flow in center
pixel. As the norm between two feature vectors, 2-dimension
Euclidean distance is defined as

dm = (Rci − Rc j)2 + (αci − αc j)2

Dmotion =
√

dm (6)

where i and j are indexes of the corresponding feature vectors.

4.3. RGB-D/T segmentation
Finally, we designed the operator for fusion of all, color,

depth and motion information. Firstly, a texture information is
extracted from the input color image. The texture is described
using Lc, ac and bC color value of the center pixel and differ-
ence between this Lc value and L value of surrounding pixels
(see section 4.1) via 3 × 3 kernel. Another used features are
magnitude and angle, obtained by the Gunnar Farneback opti-
cal flow (see section 4.2) and depth information normalized to
〈0, 1〉.

p(i, j) =



W1 · Lc

.

.

.

W3 · (L8 − Lc)

zc

Rc

αc



(7)

It means that each pixel is described by 14-dimensional vec-
tor, as can be seen at equation 7, where first 11 values are same
as for texture segmentation, zc ∈ 〈0, 1〉 is depth value for cen-
ter pixel, Rc is magnitude and αc is angle obtained from optical
flow in this position. The norm between two feature vectors is
defined as follow

dz = (zci − zc j)2

DRGBDT =
√

dL + dab + ds + dz + dm (8)

where i and j are indexes of two feature vectors, dL, dab and ds

are defined in equation 4 and dm in equation 6.

3



5. Pilot experiments

Each segmentation method variant has been evaluated on
specific dataset to reflect the targeted application of the pro-
posed variant. The pilot experiments were focused to show
the differences of segmentation results and to measure the addi-
tional computational cost of extended segmentation procedure.

5.1. Texture-based segmentation
Results of the fundamental texture segmentation was col-

lected and evaluated using the Berkeley Segmentation Dataset
[13]. The dataset contains 500 images divided into training,
testing images and image for evaluation. The evaluation pro-
cess was done on all of them using the EvaluationSegmenta-
tion1 evaluation protocol (software support and ground truth
data).

Table 1 presents the results of evaluation. The metrics are
defined as follow, where T P is true positive, T N true negative,
FP false positive and FN false negative rate.

• Precision
p =

T P
T P + FP

(9)

• Recall (Sensitivity)

r =
T P

T P + FN
(10)

• F-measure
f m =

2pr
p + r

(11)

• Specificity

s =
T N

T PN + FP
(12)

• Accuracy

a =
T P + T N

T P + FP + T N + FN
(13)

• Fallout
f0 =

FP
FP + T N

(14)

Method Precision Recall F-measure Specificity Accuracy Fallout

Texture-based segmentation 0.526 0.689 0.571 0.633 0.641 0.366

Table 1: Results of texture-based segmentation accuracy on the Berkeley Seg-
mentation Dataset.

The areal image segmentation task was selected as the rep-
resentative application of texture based segmentation method.
We used the Aerial Image Segmentation Dataset [14] for the pi-
lot experiments. In contrast with other types of segmentation,
a significantly smaller window for histogram profiles extrac-
tion had to be used. We used the window of size 11× 11 pixels,
which preserves more details in the image. Then we used 11-
dimensional local feature vectors, 16 textons and 8 histogram
profiles without final merging. The results in Figure 2 shows
the ability of the approach to adapt to local image contrasts and
stability for various texture areas.

1www.visceral.eu/resources/evaluatesegmentation-software

Figure 2: A result of areal image segmentation a) color input images b) texture
segmentation

5.2. Motion-based and Depth-based segmentation

We used the moving people detection task to study and
analyze the results of motion and RGB-D/T segmentation. For
this purpose was used the RGB-D People Dataset [15], which
contains sequences of images with corresponding depth data.
The data contains mostly walking or standing people seen from
different orientations and with different levels of occlusions.

In case of motion segmentation, we used 2-dimensional lo-
cal feature vectors for each pixel (see section 4.2), 16 textons,
9 histogram profiles extracted by 31 × 31 window with final
merging. The result of the motion segmentation at Figure 3c
shows than even with using only 2-dimensional feature vectors
it is possible to segment motion accurately.

Used parameter values of RGB-D/T segmentation differ only
in size of local feature vectors and merging. In this task 14-
dimensional vectors (see section 4.3) and no merging was used.
An example of the result can be seen in figure 3d where can
be seen that by using color, motion and depth information si-
multaneously, the accuracy of the method is increased. In case
of moving objects, the shape and the borders of the object are
preserved and accurate.

The Hand-Hand Interaction data set [16], which contains
color and depth image sequences of interactions, was used to
experiment and analyze the characteristics of texture- and RGB-
D/T segmentation in the hand detection task. The results can
be seen in figure 4.

In this part of experiments, we set parameter values to 16
textons, 9 histogram profiles and histogram extraction window
of size 31x31 pixel using final merging. For texture segmenta-
tion 11-dimensional and for RGB-D/T segmentation 14-dimen-
sional local feature vectors was used (see section 4).
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Figure 3: a) color image b) depth image c) motion segmentation d) RGB-D/T
segmentation

Figure 4: a) color image, depth image and motion visualization b) texture seg-
mentation c) RGB-D/T segmentation

5.3. Computational cost

In our pilot experiments, we were interested in computa-
tional demands of particular segmentation pipeline parts. The
main goal of these experiments is to decrease the computational
cost of the particular parts and make the pipeline suitable for
the real time processing. For this purpose we used basic laptop
Intel Core i5-2450M (2.50 GHz) 4 GB.

Table 2 presents an average percentage of total time con-
sumed by segmentation. The time was measured on the RGB-
D People Dataset [15], which contains 480x640 pixel images.
Obviously, the results shows that the most time consuming part
is clustering.

Texture Segmentation Motion segmentation RGB-D/T segmentation

Local feature

extraction
9.85% 23.25% 17.55%

Quantization

to textons
48.47% 40.15% 43.31%

Local texton

distribution
22.26% 24.74% 16.05%

Histogram

profiles
19.21% 11.76% 22.82%

Merging 0.21% 0.10% 0.27%

0.89 fps 0.96 fps 0.65 fps

Table 2: The percentage of time required for different parts of segmentation and
average number of processed frames per second (fps)

We further modified our feature and histogram profiles ex-
traction steps to experiment with selecting only subsets of data
during this process. While preserving the accuracy of the seg-
mentation, we decrease the amount of selected pixels that re-
sults in lower computational demands.

The execution time was measured on the images of size
321 × 481 pixels. The images were obtained from the Berkeley
Segmentation Dataset [13].

Extraction step [1,1] [1,2] [2,1] [2,2]

Computation time in ms 582.58 431.87 295.24 142.08

Frame rate in fps 1.72 2.32 3.39 7.04

Table 3: Computational cost in milliseconds (ms) and number of processed
frames per second (fps)

The table 3 shows our improved results where the first row
defines a value of the feature extraction offset M and value of
the histogram profile extraction offset N. The offset is defined
in both axis and means that every Nth feature and every Mth
histogram will be extracted. The [1,1] column defines extrac-
tion without improvement. In the second row, the average com-
putation time of segmentation is showed and in the third row
frame rate in fps is presented. The advantage of this approach
is that the algorithm with this reduction is suitable for real time
segmentation while the accuracy of the method is preserved.

6. Conclusion

In this work, we presented the method that was designed to
decrease the segmentation pre-processing by leveraging the lo-
cal feature dimensionality reduction by the quantization app-
roach. Following the efficient selected segmentation methods,
we proposed and tested the modification of the method for depth
and temporal data. The important step of our method is the quan-
tization of the local distribution of extracted features to decrease
the computational costs of the whole segmentation process.

The proposed approach was implemented and evaluated on
datasets of three application domains: areal-image segmenta-
tion, hand detection and pedestrian detection.

Pilot experiments showed that described segmentation pipe-
line is suitable for more than texture based segmentation. De-
scribed algorithm is capable of segmenting mixture patterns
what is usable also for motion and RGB-D/T segmentation.
Also our modification method using the sampling of the lo-
cal features during extraction step shows the possibility to im-
prove the computational demands of the method while preserv-
ing the method accuracy.
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