
Evolutionary Functional Approximation of Circuits
Implemented into FPGAs
Zdenek Vasicek, Vojtech Mrazek and Lukas Sekanina

Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence
Brno, Czech Republic

Email: vasicek@fit.vutbr.cz, imrazek@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—In many applications it is acceptable to allow a small
error in the result if significant improvements are obtained in
terms of performance, area or energy efficiency. Exploiting this
principle is particularly important for FPGA-based solutions that
are inherently subject to many resources-oriented constraints.
This paper devises an automated method that enables to ap-
proximate circuit components which are often implemented in
multiple instances in FPGA-based accelerators. The approxima-
tion process starts with a fully functional gate-level circuit, which
is approximated by means of Cartesian Genetic Programming
reflecting the error metric and constraints formulated by the
user. The evolved circuits are then implemented for a particular
FPGA by common FPGA synthesis and optimization tools. It is
shown using five different FPGA tools, that the approximations
obtained by CGP working at the gate level are preserved at the
level look-up tables of FPGAs. The proposed method is evaluated
in the task of 8-bit adder, 8-bit multiplier, 9-input median and
25-input median approximation.

I. INTRODUCTION

Thompson‘s evolutionary circuit design conducted in a
field programmable gate array (FPGA) in the middle nineties
proved that it is possible to evolve digital circuits directly at the
level of configuration bit stream in a reconfigurable chip [1].
This approach has been adopted for other reconfigurable
digital well as analogue reconfigurable platforms (such as [2],
[3]). Thompson‘s approach can be classified as the intrinsic
and unconstrained evolution. By the intrinsic evolution we
mean that all candidate circuits are evaluated directly in a
chip. The unconstrained evolution means that no restrictions
are posed on the parts of the chip where the reconfiguration
is carried out. In the case that only very specific parts of the
reconfigurable chip (such as look-up table (LUT) contents of
the FPGA) can be modified, the approach is referred to as
constrained evolution. However, most of the research in the
evolvable hardware field is performed at the level of extrinsic
evolution, where candidate circuits are evaluated using a circuit
simulator. The most innovative and efficient designs that truly
exploit properties of the reconfigurable platform and that
are optimized for a given environment have been evolved
in the intrinsic evolution scenario. These designs, however,
often show unwanted properties such as various reliability and
robustness issues. In order to eliminate them, some constraints
are always introduced in practice.

It is assumed in this paper that a mainstream FPGA
chip is the target platform. The objective is to create well-
optimized approximate circuit implementations intended for

small energy-efficient FPGA-based embedded systems. Ap-
proximate circuits, which have been developed in the field of
approximate computing [4], are characterized by significantly
improved parameters (such as power consumption, area and
delay) for the cost of some application-specific acceptable er-
ror with respect to their fully functional versions. Evolutionary
approximation is one of the methods developed for an efficient
circuit approximation [5].

As performing the unconstrained evolution directly at the
level of configuration bit stream is currently unsafe and ac-
tually almost impossible (because format of the configuration
bit stream is not documented), one can utilize the constrained
evolution in the FPGA, which consists in pre-synthesizing
some parts of the approximate circuit (typically the routing
of programmable components) and evolving the remaining
parts (typically the LUTs contents), see, for example, the on-
chip evolution of image filters using approximate elementary
components [6].

In this paper, we propose to evolve approximate circuits
extrinsically (i.e. candidate circuits are simulated using a
software tool) and then utilize a common FPGA synthesis
tool chain to safely obtain desired (i.e. approximate) circuits
for a particular FPGA. It has to be noted that common
FPGA synthesis tools do not directly support approximate
circuit design. The approximate circuits are evolved using
Cartesian genetic programming, following the method of the
evolutionary functional approximation that we have developed
for gate-level circuit approximation in our previous work [5],
[7]. The approximation process starts with a fully functional
circuit implementation, which is approximated by means of
CGP reflecting the error metric and constraints formulated
by the user. It is shown in the paper that circuit parameters
(particularly the area reduction) obtained by CGP working
at the gate level are almost perfectly preserved by common
FPGA synthesis tools producing circuits consisting of 6-input
LUTs. This paper extends our study devoted to the evolution-
ary approximation of general logic circuits [8]. In this paper
we discuss approximation of 8-bit adders, 8-bit multipliers,
and 9-input and 25-input median circuit. In addition to that,
evolved approximate circuits are employed and evaluated in
three common image processing components – image filters
and edge detectors.

The rest of the paper is organized as follows. Section II
briefly surveys the related research in evolutionary design

and approximate computing. Section III presents the proposed
method. Results are reported in Section IV and discussed
in SectionV. Conclusions are given in Section VI.

II. RELATED WORK

A. Circuit Design and Approximation

Conventional circuit synthesis and optimization tools (such
as ABC [9]) are typically constructed as deterministic systems.
In order to improve their results, non-deterministic heuristic
methods are introduced. For example, these heuristics can be
based on local resynthesis [10], simulated annealing [11] or
evolutionary algorithms [12]. Improvements in the quality of
optimization have been reported, but for the cost of runtime
and non-deterministic behavior of the optimization procedure.
Recently developed circuit approximation tools, however, re-
lies on non-deterministic heuristics [13], [14], [15].

This paper falls into the area of functional approximation
which is one of the methods allowing designers to approx-
imate circuits at the level of logic behavior. The idea is to
implement a slightly different Boolean function to the original
one providing that the error is acceptable and the area, power
consumption and other parameters are reduced adequately. The
approximations are obtained by a heuristic procedure which
modifies the original, accurate circuit. Examples of systematic
approximation methods that were evaluated for ASIC designs
are SASIMI [13], SALSA [14] and ABACUS [15].

In the context of FPGAs, circuit approximation has been
introduced and evaluated by means of the GRATER tool [16].
It uses a genetic algorithm to determine the precision of
variables within an OpenCL kernel. By selectively reducing
the precision, the number of parallel approximate kernels that
can be mapped in the fixed area budget of an FPGA can be
increased with respect to the original kernel implementations.

B. Evolutionary Approximation

Evolutionary circuit optimization and evolutionary circuit
approximation are in principle identical methods, which, in
fact, differ only in setting of the optimization objective and
constraints. In the former case, the error of the resulting
circuit is requested to be strictly smaller or equal to the error
dictated by the specification. In the latter case, increasing
the error can be exchanged for reducing the area, latency or
power consumption. In evolutionary algorithms, the quality of
candidate solutions is measured using a fitness function, which
can involve one or more objectives, for example, the error, area
and delay in the case of circuit approximation.

Evolutionary circuit optimization and approximation meth-
ods usually employ CGP, which is a form of genetic pro-
gramming [17], [5]. The circuit error, which is a crucial
optimization objective, is calculated according to the type of
circuit and user requirements. In approximate circuit design
methods, the arithmetic errors (such as the mean absolute error
or RMSE) are often employed. In order to obtain the error
for a given circuit, circuit responses are typically computed
for a training data set (i.e. a subset of all possible input
vectors) and compared with the requested values. However,

the resulting value is not the exact arithmetic error. For less
complex circuits, it is possible to apply all possible test vectors
(2n vectors for an n-input circuit) to get the exact arithmetic
error. In the case of complex circuits, the exact error can be
in some cases obtained by advanced formal methods [7].

As many candidate circuits are typically generated and
evaluated during the evolution, the circuit simulation has to
be very fast. A common solution for the gate-level CGP
executed on a processor is a bit-level parallel simulation, in
which several test vectors are encoded into w-bit operands
and executed using bit-wise logic instructions in parallel [17].
The obtained speedup is w on a w-bit processor (assuming
2n ≥ w). However, this approach is hard to apply for circuits
based on 6-input LUTs.

It is worth to mention that a sort of approximate com-
puting was performed by the evolvable hardware community
before the current “era” of approximate computing. Thompson
evolved very efficient tone discriminators in the FPGA, but
they showed various reliability issues [1]. This result inspired
Miller and his collaborators to introduce the concept of
“evolution in materio” which enabled to design very energy
efficient solutions directly in a suitable programmable ma-
terial. In 1999, Miller introduced a CGP-based method for
finite impulse response (FIR) filter design [18] that would be
called functional gate-level approximation nowadays. Kneiper
et al. traded the robustness of evolved classifiers (i.e. the
classification accuracy) for the area on a chip [19].

III. PROPOSED METHOD

The objective is to minimize the area of circuits that have to
be implemented into an FPGA, assuming that approximations
are allowed. The proposed CGP-based approximation method,
which is employed at the level of original circuits, before a
common FPGA tool is executed, is described in next sections.

A. Circuit Representation

The evolution could operate either at the level of gates
(components) used in the original circuits or at the level of
LUTs available in the FPGA. However, there are only a few
papers dealing with evolutionary circuit design at the level of
LUTs (e.g. [20]). Most CGP-based approaches deal with the
gate or component level utilizing two-input gates. The main
reason is that the bitwise parallel simulation is not directly
applicable for circuits consisting of 4- or 6-input LUTs and
the circuit evaluation is then one or two orders of magnitude
slower than a well-optimized gate-level simulator. Moreover,
employing CGP with 6-input LUTs (each of them encoded
using 64 bits) would lead to difficult search spaces and very
inefficient search procedures. Hence, the proposed method
operates with two-input nodes (gates) because it primarily
leads to the fastest evaluation of candidate solutions and well-
know types of search spaces.

A gate-level ni-input/no-output circuit is represented using
a directed acyclic graph which is encoded in a 1D array con-
sisting of nc gates. This array is internally stored using a string
of integers, the so-called chromosome. The set of available

Fig. 1. Example of a circuit in CGP with parameters: ni = 5, no = 2,
nc = 5, Γ = {0and, 1or, 2xor}. Chromosome: 2, 3, 0; 2, 4, 1; 5, 2, 1; 7, 6, 2;
7, 4, 1; 7, 8. Gate 9 is not used. Its logic behavior is: y1 = (x2 and x3) or x2;
y2 = y1 xor (x2 or x4)

logic functions is denoted Γ. The primary inputs are labeled
0 . . . ni−1 and the gates are labeled ni, ni+1, . . . , ni+nc−1.
For each gate, three integers are included in the chromosome
– two labels specifying indices where the gate inputs are
connected to and a code of function in Γ. The last part of the
chromosome contains no integers specifying either the nodes
where the primary outputs are connected to or logic constants
(’0’ and ’1’) which can directly be connected to the primary
outputs. Example is given in Fig. 1. The chromosome size
is 3nc + no genes (integers) if two-input gates are used. The
main feature of this encoding is that while the size of the
chromosome is constant (for a given ni, no and nc), the size
of circuits represented by this chromosome is variable as some
gates can remain disconnected.

B. Search method
The search method presented as Algorithm 1 follows the

standard CGP approach [17]. The initial population P is
seeded by the accurate circuit (p) and λ offspring circuits
created by a point mutation operator modifying h genes of the
parent individual p (h randomly chosen integers are replaced
by randomly generated integers). In order to generate a new
population, λ offspring individuals are again created by a point
mutation operator. The parent is either the accurate circuit
(in the first generation) or the best circuit of the previous
generation (in remaining generations).

One mutation can affect either the gate function, gate input
connection, or primary output connection. A mutation is called
neutral if it does not affect the circuit’s fitness. If a mutation
hits a non-used part of the chromosome, it is detected and
the circuit is not evaluated in terms of functionality because

Algorithm 1: CGP
Input: CGP parameters, fitness function
Output: The highest scored individual p and its fitness

P ← the accurate circuit p and its λ offspring created by1

mutation;
EvaluatePopulation(P);2

while 〈terminating condition not satisfied〉 do3

α← highest-scored-individual(P);4

if fitness(α) ≥ fitness(p) then5

p← α;6

P ← create λ offspring of p using mutation;7

EvaluatePopulation(P);8

return p, fitness(p);9

it has the same fitness (i.e. quality) as its parent. Otherwise,
the error is calculated. For further details about CGP and
its parameters setting, the reader is recommended to consult
standard references [17].

There are two design objectives for CGP: minimizing the
functionality (error) and the number of gates.

C. Fitness function

For different types of circuits, specific fitness functions
have to be constructed. In the case of arithmetic circuits, it
is natural to minimize the arithmetic error, for example the
mean absolute error, between candidate approximations and
the specification for all possible input combinations.

Generating and evaluating all possible input combinations
is tractable only for small circuits because the number of
all possible input vectors as well as required run-time grows
exponentially with the increasing number of input signals. To
overcome this problem, two approaches are used in practice.
The arithmetic error can efficiently be calculated either using
Binary decision diagrams (BDDs) or estimated using a subset
of all possible input combinations. The latter approach is
usually employed for circuits where the construction of BDDs
is intractable.

In our case, we will deal with relative small arithmetic
circuits with bit-widths not exceeding 8 bits. Hence, it is more
efficient to employ parallel simulation and calculate the error
using all possible input vectors (216 for the considered 8-bit
arithmetic circuits). Similarly to the BDD-based approach, the
simulation-based method keeps the resulting fitness accurate,
however, it is much faster. The main reason for that is
the presence of instructions available in the contemporary
off-the-shelf CPUs that enable to process up to 256 input
vectors in parallel. When employed in fitness function, tens of
microseconds (depending on the number of gates of a circuit)
are required to obtain response for all 216 input vectors [21],
[22].

The same error metrics (i.e. the mean absolute error) can be
applied to measure the quality of non-linear signal processing
circuits. In this case, however, it seems to be sufficient to
generate a subset of all possible input vectors that is then used
to evaluate candidate approximation. It has to be emphasized,
however, that evolved circuit has to be evaluated using a test
data set after finishing the evolution in order to determine its
behavior for unseen input vectors.

Let A be a candidate circuit represented using CGP and S
an original circuit (specification). Let FA,FS : Bni → Bno

be Boolean functions computed by A and S, respectively. Let
T be a set (a subset in the case of signal processing circuits)
of all possible input combinations. The mean absolute error
Error(S,A) between S and A can be defined as follows:

Error(S,A) =
1

|T|
∑
~t∈T

|N(FA(~t))−N(FS(~t))|, (1)

where N(~x) represents a function N : Bni → Z returning a
decimal value of a binary vector ~x. In this paper, we consider

Fig. 2. The number of LUTs and number of gates (nG) for various approxi-
mate 8-bit adders synthesized using common synthesis tools.

Boolean functions manipulating binary numbers encoded us-
ing the two’s complement. Hence, N is a natural conversion
from two’s complement.

D. Evolutionary Approximation

In order to evolve circuits showing different compromises
between the error and size, a single-objective CGP is executed
multiple times with different parameters. Resulting solutions
are displayed using a Pareto front. Two approaches have been
proposed in literature.

In [7], a two-stage procedure was employed for a given
error ei. In the first stage, a given accurate circuit (S) is
gradually modified by CGP to exhibit error ei providing that
a 5% difference is tolerated with respect to ei (tolerating a
small error is acceptable; otherwise the search could easily be
stuck in a local extreme). In the second stage, the number of
gates is minimized, assuming that the error remains within the
required range.

Another way to obtain a Pareto front is to constrain the
number of components or gates to gi (gi < nG, where nG is
the number of gates needed to implement the accurate circuit)
that can be used for circuit implementation. CGP is then used
to minimize the error for a given gi [5].

In this paper, the two-stage approach which can easily be
embedded into the Algorithm 1 is employed. The following
fitness function is utilized in the first stage:

fitness(A) =

{
Error(S,A) if Error(S,A) ≤ ei
−1 otherwise,

In the second stage, the circuit size is optimized. Hence, the
fitness function is constructed as follows:

fitness(A) = −

{
|A| if |Error(S,A)− ei| ≤ 0.05ei

∞ otherwise,
,

where |A| denotes the number of gates employed in a candi-
date circuit A.

Fig. 3. The relation between improvement in the number of LUTs and in the
number of gates for approximate adder

IV. RESULTS

In order to assess the impact of CGP-based optimization and
approximation on the synthesis results, two classes of circuits
which differ in the size are considered: small arithmetic
circuits (8-bit adders and 8-bit multipliers) and non-linear
signal filtering circuits (over ten thousand gates).

The following experimental methodology was utilized. First,
we generated conventional gate-level implementations of the
considered circuits. In order to avoid a bias, the circuits
were highly optimized by ABC. Then, the optimized origi-
nal circuits were approximated using CGP for various error
ei. Finally, the gate-level circuits were converted to Verilog
netlists (one gate is represented by one logic expression) and
synthesized. The goal of synthesis is to minimize the area,
i.e. the number of (up to 6-input) LUTs. Results are presented
for ABC and four commercial tools: Precision RTL 2015.1.6,
ISE 14.7, Vivado 2015.2, and Quartus 14.1. Note that all
FPGA synthesis tools start with the same result of CGP in a
particular experiment. The circuit size and delay are extracted
from the resulting technology netlists. In the case of ABC,
the synthesis and optimization is performed by 15 iterations
of resyn2 script, followed by mapping if -K 6 -a. In
the case of Xilinx and Precision, the 6-LUT FPGA chip under
label Virtex7 XC7VX330 was chosen for the implementation.
The FPGA chip EP4S40G of Altera’s StratixIV family was
taken in Quartus. Only single-output LUTs are considered (i.e.
LUT-combining is not permitted) to provide fair conditions
for all tools. The implicit setup of CGP parameters follows
the recommendations given in [17]: λ = 4, h = 5, nc = nG,
gmax = 104. Γ includes all 2-input gates. The results are
presented in the form of graphs based on the best obtained
circuit out of 20 independent runs of CGP. The experiments
were conducted on a 64-bit Linux machine running on Intel
Xeon X5670 CPU (2.93 GHz, 12 MB cache) equipped with
a 32 GB RAM.

A. Arithmetic circuits

The 8-bit Kogge-Stone CLA adder is the simplest circuit
in our benchmark set. CGP started with nG = 67 (fully

Fig. 4. The number of LUTs and number of gates (nG) for various approxi-
mate 8-bit multipliers synthesized using common synthesis tools.

functional adder) and then minimized the number of gates for
several target mean absolute errors, ei = {0.001%. . . 2.5%}
of Emax, where Emax is the maximum absolute arithmetic
error Emax = 2w − 1 + 2w − 1. For 8-bit adder (i.e. w = 8
and ni = 2w = 16), Emax = 510. An approximate adder
exhibiting ei = 1%, for example, produces output values with
difference equal to 5.1 in average.

Figure 2 shows that the circuit size (in LUTs) was reduced
even for such a small circuit. Note that the x axis is in the
logarithmic scale. Xilinx ISE and Precision RTL provide the
most compact implementations of not only accurate but also
approximate adders. There is only one case (ei = 2.5%),
where Quartus was able to outperform results of Xilinx ISE
and Precision RTL. On the other hand, the accurate adder is
implemented using half of the LUTs compared to the same
accurate adder synthesized using Quartus.

Performance of synthesis tools is roughly similar except
the case of a fully functional adder, where ABC and Quartus
generate the most resources consuming implementations. As
evident, it makes no sense to introduce the approximations for
really small target errors as the resulting circuits can be more
complex than the fully functional ones.

A detailed analysis of the small circuits revealed that after
reducing the original implementation by less than 40% gates,
the number of LUTs is increasing for some tools. This is evi-
dent in Figure 3 that shows the relation between improvement
in the number of LUTs and in the number of gates. Except of
ABC and Quartus that have a lot of space for improving bad
implementation quality of the accurate adder, the remaining
synthesis tools were unable to exploit the reduction in the
number of gates. This observation corresponds with Xilinx’s
approach used for estimating the total capacity of FPGA which
counts from 6 to 24 two-input gates for one LUT depending
on the number of inputs used. The gate-level optimization has
to take this fact into account.

Figure 4 shows various approximations of the 8-bit Carry
Save Adder Multiplier. The fully functional multiplier is
five times more complex than the accurate adder from the
previous experiment. The maximum absolute arithmetic er-

Fig. 5. The relation between improvement in the number of LUTs and in the
number of gates for approximate multiplier

ror is Emax = (2w − 1) · (2w − 1). For 8-bit multiplier,
Emax = 65025. It means that a multiplier with ei = 1%
produces outputs whose average difference is more than 127×
higher compared to the adder. The accurate multiplier with
nG = 320 gates led to 95 LUTs (with ABC) and 130 LUTs
(with ISE). In approximate scenario and for errors smaller than
0.01%, ABC is the best performing tool. For higher error rates,
Precision is the best tool.

As the multiplier is more complex than the adder, the
improvement in the area obtained at the gate level is preserved
at the LUT level almost perfectly. Hence Figure 5 presents
almost linear mapping.

In summary, the gate-level approximation of arithmetic
circuits that have to be implemented using LUTs in FPGAs
has to be conducted with caution especially in the case of
small desired errors where introducing of small errors usually
yield none or only neglible improvement.

B. Non-linear signal processing circuits

The 9-input (i.e. 3× 3 filtering window) and 25-input (i.e.
5 × 5 filtering window) median filters were chosen as an
example of typical circuit of image processing applications.
In order to approximate the median circuits, we used standard
CGP with Γ = {min,max} (operating over 8 bits). The
number of generations was restricted to gmax = 3 · 106

for the 9-median and gmax = 300 · 103 for the 25-median
which corresponds to 3 hour CGP runs. For purposes of
the fitness evaluation, 104 training vectors were randomly
generated for the 9-median and 105 vectors for the 25-median.
The accurate 9-median (25-median, respectively) constructed
using bitonic-sorting algorithm requires 38 min/max com-
ponents (220 components, respectively). The aforementioned
CGP-based process was repeated with constrained resources,
leading to approximate median circuits with the mean error
ei = {0 . . . 10%}. In order to obtain gate-level representations,
the min and max operations were synthesized using ABC
(66 gates needed for each component). The resulting flattened
netlist contains 2356 (13702) gates in the case of the accurate
9-median (25-median).

Fig. 6. Parameters of various approximations of the 9-input median circuit

Figure 6 and Figure 8 show the number of LUTs for a given
mean absolute error. The tools compared in this study provide
very different results (consider that the y-axis is logarithmic),
where the area can differ by 100%. Hence in order to imple-
ment a median outputting circuit using constrained resources,
it is recommended to use a better tool allowing a deep area
optimization of the accurate solution rather than to introduce
approximations using an average-performing synthesis tool.

Figure 7 shows relation between improvement in the number
of LUTs and in the number of gates for approximate 25-input
median. Despite the spread in the number of LUTs achieved
across various tools, the improvement in the area obtained at
the gate level is preserved at the LUT level almost perfectly.

C. Approximate Circuits in Real Applications

Not only the circuit parameters but also an impact on real
applications needs to be quantified. In order to evaluate the
effect of the proposed approximations, we approximated three
basic image operators – Sobel operator, Gaussian filter and
Median filter. The image operators were chosen intentionally
because many problems from image processing domain exhibit
a great degree of error resilience caused by limited human

Fig. 7. The relation between improvement in the number of LUTs and in the
number of gates for approximate 25-input median

Fig. 8. Parameters of various approximations of the 25-input median circuit

perception capabilities. Hence, it is possible to introduce an
error to a corresponding image processing chain without a
significant degradation in quality. This gives us a possibility
to reduce the power consumption because the lower number
the LUTS, the lower power consumption.

The Sobel operator and Gaussian filter are typical examples
of convolution filters, i.e. filters giving on their output a
weighted sum of inputs pixels. While Gaussian filters need to
be implemented using multipliers and adders, Sobel operator
can be implemented solely from the adders because the con-
volution kernel contains only two coefficients. Both operations
represent a basic building block that forms usually a part of
more complex systems.

The Sobel operator is one of the most popular edge detectors
that is defined on 3 × 3 pixel window. It is a discrete
differentiation operator that computes an approximation of the
gradient (G) of the image intensity function. The gradient is
determined using horizontal (Gx) and vertial (Gy) changes
that are calculated by means of a convolution kernel that is
used in direct and 90-degree rotated version. The gradient
magnitude is computed using the square root function as
G =

√
Gx

2 + Gy
2 which is often replaced with the absolute

value G̃ = |Gx|+ |Gy| to reduce the computational require-
ments. The directional changes Gx and Gy as well as the final
gradient G can be determined using adders as follows. The
multiplication by two is implemented by arithmetic shifting.
Subtraction is composed of adders and a set of inverters. The
absolute value is obtained by an inversion controlled by the
most significant bit representing a negative sign. In total 15
additions, 16 inverters and 15 XORs are required.

There exists several approaches to measure the quality of
filtered images. The structural similarity index (SSIM) repre-
sents probably the most advanced approach which attempts
to quantify the visibility of errors (differences) between a
distorted image and a reference image [23].

SSIM calculated for various approximate Sobel operators
evaluated on a set of 25 test images having 384x256 pixels
each is given in Figure 9. Three architectures were considered:
a) the accurate Sobel operator G whose output serves as a

Fig. 9. Filtering quality of Sobel operator approximated using 8-bit precise
adder (error=0) and various approximate adders whose average error is ranging
from 0.0015% to 2.5%

reference, b) the approximate Sobel operator G̃ implemented
using accurate 8-bit adders, and c) the approximate Sobel
operator implemented using approximate adders. Note that
eight different approximate Sobel operators were created. For
the simplicity, all additions were replaced with the same
approximate adder exhibiting error ei.

The similarity index changes only slightly when approxi-
mate adders exhibiting error lower than 0.1% are employed.
As the error increases, however, the average similarity index
decreases dramatically. According to the results, it is reason-
able to employ adders exhibiting average arithmetic error not
worse than 0.5%. Otherwise, the output quality is poor. We
assume that the Sobel filter is very sensitive to the maximal
absolute error and it would be probably necessary to include
an additional constrain to the fitness function to improve the
results.

SSIM for various 8-bit Gaussian filters evaluated on the
same set of 25 test images are given in Figure 10. Three
window sizes (3 × 3, 5 × 5, and 7 × 7) depending on the
chosen standard deviation σ are considered. Two architectures
were implemented: a) the Gaussian filter implemented using
accurate 8-bit multipliers and a single accurate adder that
sums up the products, and b) the approximate Gaussian filter
implemented using approximate multipliers and an accurate
adder. The test images were utilizes as reference for determin-
ing SSIM. Similarly to the Sobel operator, nearly no change
in quality is observable when we employ an approximate
multiplier with error not worse than 0.1%. In this case, the
0.1% error corresponds with a noticeable reduction of the
number of LUTS (see Figure 4).

Finally, SSIM for median filters is summarized in Figure 11.
The median filter is typically used in robust statistics to remove
outliers. Its great resilience to the errors is kept even when
it is approximated. For 9-input median filter, SSIM is larger
than 99.9% for approximations exhibiting error ei < 0.7%.
When ei = 10%, SSIM decreases to 92% which is a slight
drop in performace compared to the results for Sobel operator
and Gaussian filter. According to the results, it is possible to
introduce a small error (1% in case of 25-median, 4% for

Fig. 10. Filtering quality of Gaussian filter approximated using 8-bit accurate
(error=0) and approximate multipliers.

9-median) without any significant degradation in the output
quality. This error is practically invisible in filtered images
assuming that the approximate median is employed in image
processing. As a consequence of that, 37% reduction in area
is achieved for 25-input median, which is a significant result.

Fig. 11. Filtering quality of various 9-input and 25-input median approxima-
tions

V. DISCUSSION

The complexity of the chosen benchmark circuits is roughly
identical with circuits used for the evaluation of methods such
as SASIMI [13], SALSA [14] and ABACUS [15]. Targeting
these methods towards middle-size circuits is reasonable as
approximations are typically introduced to carefully selected
subcircuits which significantly contribute to power and area
characteristics of the whole complex circuit. A typical case
is the approximation of small multipliers employed in deep
neural networks which enables to increase the number of
neurons on a chip or reduce power consumption.

Although a direct comparison with other approximation
methods is hard to perform (neither the implementations of
the methods nor the benchmark circuits are available), we
can provide only a rough comparison. For example, an 8-bit
multiplier was approximated by SASIMI, which resulted in a
37% area reduction and the average error of 0.32% [13]. In

our case, the same error corresponds with reductions about
60% of LUTs. In the case of 9-median, Pareto fronts reported
in this paper are at least of the same quality as reported
in [24]. The CGP runtimes are typically in the order of tens of
minutes for small circuits and up to three hours for medians
(2.93 GHz CPU). As no execution times are usually reported
in the literature dealing with circuit approximation, we can
only give the execution times of SALSA [14] which, on a
server with an AMD Opteron 6176 (2.29 GHz) processor,
ranged from 4 minutes to 2.5 hours depending on the circuit
complexity (2.29 GHz CPU).

An interesting result is that the gate-level optimization and
approximation conducted by CGP is preserved by common
FPGA synthesis tools, assuming that the original circuit is
of a reasonable complexity and the allowed error is not very
small. Interestingly, this result is valid even if the number of
LUTs required to implement a given circuit is relatively low
as it was demonstrated in the case of 8-bit adders consisting
of less than 25 LUTs.

VI. CONCLUSIONS

We introduced a CGP-based methodology enabling to ap-
proximate various arithmetic circuits intended for FPGA im-
plementations. The methodology was evaluated for two classes
of circuits (arithmetic circuits, non-linear signal processing
circuits) and using five FPGA synthesis tools. Due to the
limited space we did not discuss the circuit delay; however, it
has never been worsened by introducing the approximations
in this study. By modifying only the fitness (error) function
the method can easily be extended to approximate other
types of combinational circuits such as common logic circuits.
Here, the Hamming distance determined using BDDs may be
employed.

We have shown that the results provided by commercial
FPGA design tools vary significantly. This is noticeable espe-
cially in the case of median circuits consisting of a large num-
ber of gates. In this case, some tools provided very inefficient
implementations independently whether it was approximate or
accurate circuit. Hence, selection of the right synthesis tool
seems to be a very important design step. In addition to that,
we demonstrated that results provided by commercial FPGA
design tools can significantly be improved by introducing an
approximation conducted by CGP.

Our future work will be focused on circuit approximation
at the LUT level and accelerating the design method.

ACKNOWLEDGMENTS

This work was supported by Czech science foundation
project GA16-17538S and The Ministry of Education, Youth
and Sports of the Czech Republic from the National Pro-
gramme of Sustainability (NPU II); project IT4Innovations
excellence in science - LQ1602.

REFERENCES

[1] A. Thompson, P. Layzell, and S. Zebulum, “Explorations in Design
Space: Unconventional Electronics Design Through Artificial Evolu-
tion,” IEEE Trans. Evol. Comput., vol. 3, no. 3, pp. 167–196, 1999.

[2] J. Langeheine, “Intrinsic hardware evolution on the transistor level,”
Ph.D. dissertation, 2005.

[3] J. Walker, M. Trefzer, S. Bale, and A. Tyrrell, “PAnDA: A reconfigurable
architecture that adapts to physical substrate variations,” IEEE Trans.
Comput., vol. 62, no. 8, pp. 1584–1596, 8 2013.

[4] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. IEEE European Test
Symposium. IEEE, 2013, pp. 1–6.

[5] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3, pp.
432–444, 2015.

[6] R. Dobai and L. Sekanina, “Low-level flexible architecture with hybrid
reconfiguration for evolvable hardware,” ACM Trans. Reconfigurable
Technol. Syst., vol. 8, no. 3, pp. 20:1–20:24, May 2015.

[7] Z. Vasicek and L. Sekanina, “Evolutionary design of complex ap-
proximate combinational circuits,” Genetic Programming and Evolvable
Machines, vol. 17, no. 2, pp. 169–192, 2016.

[8] ——, “Search-based synthesis of approximate circuits implemented into
fpgas,” in 26th International Conference on Field Programmable Logic
and Applications. IEEE, 2016, pp. 1–4.

[9] A. Mishchenko. (2012) ABC: A system for sequential synthesis and
verification, Berkley logic synthesis and verification group. [Online].
Available: http://www.eecs.berkeley.edu/˜ alanmi/abc/

[10] A. Mishchenko, S. Chatterjee, and R. Brayton, “Dag-aware AIG rewrit-
ing a fresh look at combinational logic synthesis,” in Proc. 43rd annu.
Design Automation Conf., ser. DAC ’06. ACM, 2006, pp. 532–535.

[11] P. Farm, E. Dubrova, and A. Kuehlmann, “Logic optimization using
rule-based randomized search,” in Design Automation Conf., 2005. Proc.
ASP-DAC 2005. Asia and South Pacific, vol. 2, 2005, pp. 998–1001.

[12] Z. Vasicek and L. Sekanina, “A global postsynthesis optimization
method for combinational circuits,” in Proc. Design, Automation and
Test in Europe, DATE. EDA Consortium, 2011, pp. 1525–1528.

[13] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Design, Automation and Test in Europe, DATE’13.
EDA Consortium San Jose, CA, USA, 2013, pp. 1367–1372.

[14] S. Venkataramani, A. Sabne et al., “SALSA: systematic logic synthesis
of approximate circuits,” in 49th Annu. Design Automation Conf. 2012,
DAC ’12. ACM, 2012, pp. 796–801.

[15] K. Nepal, Y. Li et al., “ABACUS: A technique for automated behavioral
synthesis of approximate computing circuits,” in Proc. Conf. on Design,
Automation and Test in Europe, ser. DATE ’14. EDA Consortium,
2014, pp. 1–6.

[16] A. Lotfi, A. Rahimi et al., “Grater: An approximation workflow for
exploiting data-level parallelism in FPGA acceleration,” in 2016 Design,
Automation Test in Europe Conf. Exhibition, ser. DATE ’16. EDA
Consortium, March 2016, pp. 1279–1284.

[17] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[18] ——, “On the filtering properties of evolved gate arrays,” in 1st NASA-

DoD Workshop on Evolvable Hardware, 1999, pp. 2–11.
[19] T. Knieper, P. Kaufmann et al., “Coping with resource fluctuations:

The run-time reconfigurable functional unit row classifier architecture,”
in Proc. of the 9th Int. Conf. on Evolvable Systems: From Biology to
Hardware, ser. LNCS, vol. 6274. Springer, 2010, pp. 250–261.

[20] S. M. Cheang, K. H. Lee, and K. S. Leung, “Applying genetic parallel
programming to synthesize combinational logic circuits,” IEEE Trans.
Evol. Comput., vol. 11, no. 4, pp. 503–520, 2007.

[21] Z. Vasicek and K. Slany, “Efficient phenotype evaluation in cartesian
genetic programming,” in Proc. 15th European Conf. on Genetic Pro-
gramming, ser. LNCS 7244. Springer Verlag, 2012, pp. 266–278.

[22] R. Hrbacek and L. Sekanina, “Towards highly optimized cartesian
genetic programming: From sequential via simd and thread to massive
parallel implementation,” in Proc. 2014 conf. Genetic and Evolutionary
Computation. ACM, 2014, pp. 1015–1022.

[23] Z. Wang, A. Bovik et al., “Image quality assessment: from error
visibility to structural similarity,” IEEE Trans. Image Process., vol. 13,
no. 4, pp. 600–612, 2004.

[24] M. Monajati, S. M. Fakhraie, and E. Kabir, “Approximate arithmetic
for low-power image median filtering,” Circuits, Systems, and Signal
Processing, vol. 34, no. 10, pp. 3191–3219, 2015.

