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Abstract—We have reduced the number of lifting steps in the
calculation of the two-dimensional discrete wavelet transform by
factoring the underlying lifting scheme into a new spatial form.
Compared with recently proposed non-separable structure, we
have reduced also the number of operations. Our scheme is
primarily designed for CDF 5/3 and CDF 9/7 wavelets employed
in JPEG 2000 image compression standard. In the result, our
scheme requires only two steps for 2-D CDF 5/3 transform
compared to four steps in the original separable form or three
steps in the recent non-separable scheme.

Index Terms—Discrete wavelet transform, lifting scheme

I. INTRODUCTION

The discrete wavelet transform (DWT) is a signal-
processing tool suitable as a basis for sophisticated compres-
sion algorithms. Particularly, JPEG 2000 is an image coding
system based on such compression technique. JPEG 2000
is the only accepted compression format for Digital Cinema
conforming to Digital Cinema Initiatives (DCI) specification.

In this paper, we reduce the number of lifting steps and
memory barriers in the lifting scheme upon which DWT is
built. This is very convenient for massively-parallel archi-
tectures [1] where the lifting steps are evaluated from the
inputs to outputs in parallel. On these architectures, a delay of
output signals is essentially determined by the number of the
synchronization points. In comparison to the recently proposed
non-separable lifting scheme [2], we have also reduced the
number of arithmetic operations. Our work is directly focused
on CDF 5/3 and CDF 9/7 wavelets employed in JPEG 2000
coding system.

II. LIFTING SCHEME

In this paper, we employ the well-known z-transform nota-
tion for the description of FIR filters. The transfer function of
the two-dimensional FIR filter hkm,kn

is defined as

H(zm, zn) =

∞∑
km=−∞

∞∑
kn=−∞

hkm,kn z−km
m z−kn

n , (1)

where m refers to the horizontal axis and n to the vertical one.
Moreover, to keep consistency with [3], [4], the H∗(zm, zn) =
H(zn, zm) denotes a filter transposed to the H(zm, zn). Due
to the limited place, we have made a small abuse of notation.
Instead of the full notation H(zm, zn), we only use a shortened
labeling, such as H.

The discrete wavelet transform has undergone a gradual
development in the last few decades. Initially, Daubechies
[5] constructed orthonormal bases of compactly supported
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Fig. 1: 2-D data-flow graphs of the discussed schemes. The
order of the lifting steps is determined by the bottom numbers.
The vertical lines indicate necessary memory barriers.

wavelets. Subsequently, Cohen et al. [6] developed several
families of symmetric biorthogonal wavelet bases referred to
as CDF biorthogonal wavelets. In addition to such wavelets,
Mallat [7] demonstrated the wavelet representation of images
computed with a pyramidal algorithm based on convolutions
with quadrature mirror filters. Finally, Sweldens [8], [9] pre-
sented the lifting scheme which sped up such decomposition.
He showed how any discrete wavelet transform can be decom-
posed into a sequence of simple filtering steps.

When we combine this scheme with Mallat’s 2-D decom-
position, we obtain a quadruple of wavelet coefficients (LL,
HL, LH, HH). Now we focus on CDF 5/3 wavelet using
a factorization as specified by JPEG 2000 standard. In this
case, the two-dimensional transform employing such wavelet
consists of two horizontal and two vertical lifting steps. For
better understanding, this scheme is graphically illustrated in
Fig. 1a (referred to as Sweldens1995). The order of these steps
is limited, but not strictly fixed. In this paper, we consider
these steps as (1) horizontal step resulting into HL, HH; (2)
horizontal step into LL, LH; (3) vertical step into LH, HH;



and (4) vertical step into LL, HL. Considering the parallel
evaluation and the data dependencies, a memory barrier have
to be inserted between each two steps. These barriers form the
major bottleneck of the overall computation. The entire 2-D
transform is composed of 16 arithmetic (multiply–accumulate)
operations per output quadruple of coefficients contained in
four lifting steps. Excluding the implicit barriers at the begin-
ning and at the end of the scheme, three memory barriers are
required in between these steps in total. As the scheme uses
two-tap FIR filters[

P
U

]
=

[
P (z)
U(z)

]
=

[
α(1 + z )
β(1 + z−1)

]
, (2)

the most complex operation is calculated over three operands.
Note that α coefficient is used in step 1 and 3, β in step 2 and
4. The scheme for CDF 9/7 comprises two such connected
transforms. Note that the schemes presented in this paper
works as well for asymmetric filters.

Since the birth of the lifting scheme, its efficient realization
has been studied in many papers focused on various platforms.
Chrysafis et al. [10] modified the 1-D scheme in the way that
it enabled serial (online, pipelined) signal processing. Their
approach was extended into 2-D in many papers, e.g. [11].
So far, the 2-D image must be processed twice – once in the
horizontal and once in the vertical direction. In [12], the author
focused on the 2-D transform in that he fused the vertical and
horizontal pass into a single loop. However, it is still possible
to identify the vertical and horizontal filtering steps.

Recently, Iwahashi et al. [2]–[4] presented the non-separable
lifting scheme employing genuine spatial filtering steps P

P∗

PP∗

 =

 α (1 + zm)
α (1 + zn)

α2 (1 + zm + zn + zmzn)

 , (3)

 U
U∗

UU∗

 =

 β (1 + z−1
m )

β (1 + z−1
n )

β2 (1 + z−1
m + z−1

n + z−1
m z−1

n )

 . (4)

In this scheme, it is no longer possible to distinguish the
vertical and horizontal filtering. In their construction, the
authors derived the non-separable 2-D scheme for CDF 5/3
and subsequently CDF 9/7 transforms. As an initial step of
CDF 5/3 transform, the input signal is split into quadruples
(LL, HL, LH, HH).

x =
[

X00 X10 X01 X11 ]
T

y =
[

LL HL LH HH ]
T (5)

Then, spatial lifting steps leading to the calculation HH coeffi-
cients are performed. This is followed by parallel computation
of the HL and LH coefficients. In the third step, the LL
coefficient is updated. Formally, these steps are described as
y = N3N2N1 x, where N3N2N1 are compressed into the
matrix

N =


1 U U∗ −UU∗

P 1 0 U∗

P∗ 0 1 U
PP∗ P∗ P 1

 . (6)

Note that the compressed notation is incorrect, however, used
by the authors of [2]–[4]. The scheme is graphically illustrated
in Fig. 1b (referred to as Iwahashi2007). As in the original
scheme, a memory barrier must be inserted between each two
steps. As the result, such scheme consists of 24 arithmetic
operations in three lifting steps separated by two explicit
memory barriers. The most complex operation is calculated
over 9 operands which leads to a performance issue. (This is
because the number of operands is proportional to the data
path with the maximum delay.) Again, the scheme for CDF
9/7 comprises two such connected transforms.

Since this work is based on our previous work in [13], it
should be explained what the difference between this work
and previous work is. In [13], we have presented a block-
based method intended for graphics cards employing a scheme
foregoing the scheme proposed in this paper. In this paper, we
further reduce the number of arithmetic operations.

III. PROPOSED METHOD

Motivated by the work of Iwahashi et al. [4], we have
reorganized the elementary lifting filters in order to obtain
a highly parallelizable scheme. The main purpose of this
modification is to minimize the number of memory barriers
that slow down the calculation. As a result, we get several
2-D FIR filters.

The scheme we formed is composed of elementary filters
P = P0 + P1, and U = U0 +U1 given by

P0

P1

U0

U1

 =


P0(zm, zn)
P1(zm, zn)
U0(zm, zn)
U1(zm, zn)

 =


α
α
β
β




1
zm
1

z−1
m

 , (7)

where α, β denote filter parameters.
The filters above are assembled into more complex oper-

ations. Our scheme consists of two halves between which a
memory barrier is placed. The first half of the scheme uses
the filters derived from P (zm, zn). Similarly, the second half
uses the filters derived from U(zm, zn).

P
P0

P∗
0

P1

P∗
1

P1P
∗
1

 =


α (1 + zm)

α
α

α zm
α zn

α2 zmzn

 (8)


U
U0

U∗
0

U1

U∗
1

U1U
∗
1

 =


β (1 + z−1

m )
β
β

β z−1
m

β z−1
n

β2 z−1
m z−1

n

 (9)

Finally, our scheme is composed of four operators referred
to as S1 to S4. Between the second S2 and third S3 operator,
the memory barrier must be inserted in order to properly
exchange intermediate results. Thus, S1 and S2 form the first
lifting step and S3 and S4 form the second one. Note that
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Fig. 2: Block diagram of the proposed scheme. The individual
operators S are separated by the vertical lines. The memory
barrier is placed in between S2 and S3.

it is also possible to rewrite our scheme using six operators
instead of four. It would be also possible to rewrite the scheme
with just two operators, however, it is not possible to capture
a retention of intermediate results in such case. Additionally,
our scheme requires the induction of two auxiliary variables
(the intermediate results) per each quadruple of coefficients
LL, HL, LH, and HH. These auxiliary variables are denoted
as HL′,LH′. Their initial as well as final values are not
important. The scheme y = S4S3S2S1 x describes the relation
between input x and output y vectors. Note that in practical
realizations, each single computing unit (e.g., thread) can be
responsible of one such vector. The vectors are given by

x =
[

X00 X10 X01 X11 HL′ LH′ ]
T
,

y =
[

LL HL LH HH HL′ LH′ ]
T
.

(10)

Regarding this notation, the individual steps are defined
as follows. For better understanding, the hypothetical signal-
processing block diagram of this scheme is shown in Fig. 2.
In addition, the operations are graphically illustrated in Fig. 1c
(referred to as Kula2016). The figure shows that our scheme
is based on the Iwahashi2007 scheme. However, unlike the
Iwahashi2007, we have broken the middle step into two parts
and merged these parts into remaining two steps. Note that
operators S1 and S2 are represented by the first lifting step
and operators S2 and S3 by the second one. One can easily
verify the correctness of our scheme by comparing the top left
4× 4 submatrix of S4S3S2S1 (which corresponds to LL, HL,
LH, and HH) with the matrix N3N2N1.

TABLE I: Parameters of the discussed 2-D lifting schemes
valid for CDF 5/3 wavelet.

Scheme Steps Operations Operands Memory

Sweldens1995 4 16 3 4
Iwahashi2007 3 24 9 4
Kula2016 (this paper) 2 18 4 6

S1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

P1P
∗
1 P∗

1 P1 1 0 0
P 1 0 0 0 0
P∗
1 0 1 0 0 0

 (11)

S2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 P∗

0 P0

0 0 0 0 1 0
P∗
0 0 0 0 0 1

 (12)

S3 =


1 0 0 U1U

∗
1 U1 U∗

1

0 0 0 U∗
1 1 0

0 0 0 U 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (13)

S4 =


1 U0 U∗

0 0 0 0
0 1 0 U∗

0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (14)

Compared with [4], the total number of operations has been
reduced from 24 to 18 for the CDF 5/3 wavelet. The calcu-
lation of CDF 9/7 transform comprises two such connected
transforms between them another barrier is placed. In total,
such a calculation contains three explicit memory barriers.

IV. EVALUATION

Quantitative comparison for CDF 5/3 wavelet of all the
methods discussed is provided in Table I. The columns de-
scribe: number of lifting steps, number of arithmetic opera-
tions, maximum number of operands per the lifting step result
(the complexity of steps), and number of memory cells per
the coefficient quadruple (inclusive). For CDF 9/7 wavelet,
the number of lifting steps and thus the number of operations
must be doubled. In general, the schemes can be used for any
lifting factorization with two-tap filters.

The original Sweldens1995 scheme provides the best choice
in terms of arithmetic operands as well as their complexity.
However, it requires three explicit synchronization points
(memory barriers) for CDF 5/3 wavelet. This can be an issue
for parallel processing. The recently proposed Iwahashi2007
scheme uses the highest number of operations of all schemes.
On the other hand, it requires only two synchronizations for
CDF 5/3 wavelet and does not need any additional memory.
In numbers, this scheme reduces the number of lifting steps
to 75 %. Finally, the proposed Kula2016 scheme provides a
trade-off in the number of operations. Moreover, for CDF
5/3 wavelet, only one barrier is needed for its realization. In
comparison to the original scheme, this scheme reduces the
number of lifting steps to 50 % only.
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Fig. 3: A transform performance (without the memory throughput) on AMD 6970 and AMD 5870.

To evaluate the proposed scheme, we decided to use high-
performance GPUs programmed using the OpenCL frame-
work. Considering the image processing, we map overlapping
image tiles onto work-groups. Each thread is responsible for a
single quadrature of transform coefficients (LL, HL, LH, and
HH). At the beginning of the computation, the input image is
placed into global memory. The tiles are then transferred into
local memory. After the computation, the results are copied
back into the global memory.

The evaluation was performed on two high-end GPUs
(AMD Radeon HD 6970 and HD 5870), both equipped with
1 GB GDDR5 memory. The AMD Radeon HD 6970 contains
1 536 processors (384 VLIW4 processors) clocked at 880
MHz (memory at 1 375 MHz). The AMD Radeon HD 5870
comprises 1 600 processors (320 VLIW5) clocked at 850 MHz
(memory 1 200 MHz). On both of the cards, variable length
VLIW instructions are executed using blocks of 64 threads.

We have examined the performance of the schemes. Only
the transform performance was measured, without the in-
fluence of memory throughput. The presented results are
the average of ten measurements. The results are shown in
Fig. 3. The horizontal axes are in a logarithmic scale and
the vertical ones express the pure transform throughput. The
Iwahashi2007 scheme performs even worse than the original
separable Sweldens1995 scheme. It is not surprising, as the
scheme exhibits highest number of operations.

V. CONCLUSIONS

We have factored the 2-D lifting scheme of CDF 5/3 wavelet
into two spatial lifting steps. Our scheme reduces the number
of lifting steps and memory barriers. In general, the barriers
are the major bottleneck of parallel computations. Compared
to recently proposed non-separable structure, our scheme also
reduces the number of arithmetic operations. The scheme for
CDF 9/7 can be obtained as two such connected schemes.

A key idea behind the factorization is to group correspond-
ing one-dimensional lifting steps into joint two-dimensional
non-separable form. Future work, we would like to do, com-
prises adaptation to other wavelets, possibly in more dimen-
sions.
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