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a b s t r a c t 

This work is concerned with camera pose estimation from correspondences of 3D/2D lines, i. e. with the 

Perspective-n-Line (PnL) problem. We focus on large line sets, which can be efficiently solved by methods 

using linear formulation of PnL. We propose a novel method “DLT-Combined-Lines” based on the Direct 

Linear Transformation (DLT) algorithm, which benefits from a new combination of two existing DLT meth- 

ods for pose estimation. The method represents 2D structure by lines, and 3D structure by both points 

and lines. The redundant 3D information reduces the minimum required line correspondences to 5. A 

cornerstone of the method is a combined projection matrix estimated by the DLT algorithm. It contains 

multiple estimates of camera rotation and translation, which can be recovered after enforcing constraints 

of the matrix. Multiplicity of the estimates is exploited to improve the accuracy of the proposed method. 

For large line sets (10 and more), the method is comparable to the state-of-the-art in accuracy of orien- 

tation estimation. It achieves state-of-the-art accuracy in estimation of camera position and it yields the 

smallest reprojection error under strong image noise. The method achieves top-3 results on real world 

data. The proposed method is also highly computationally effective, estimating the pose of 10 0 0 lines in 

12 ms on a desktop computer. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

Absolute pose estimation is the task of determining the relative

position and orientation of a camera and an object to each other

in 3D space. It has many applications in computer vision: 3D re-

construction, robot localization and navigation, visual servoing, and

augmented reality are just some of them. The task can be formu-

lated either as object pose estimation (with respect to camera co-

ordinate frame) or as camera pose estimation (with respect to ob-

ject or world coordinate frame). The latter formulation is used in

this paper. 

To estimate the camera pose, correspondences between known

real world features and their counterparts in the image plane of

the camera are needed. The features can be e. g. points, lines, or

combinations of both ( Kuang and Astrom, 2013 ). The task has been

solved using point correspondences first ( Fischler and Bolles, 1981;

Lowe, 1987 ). This is called the Perspective-n-Point (PnP) problem

and it still enjoys attention of researchers ( Ferraz et al., 2014; Lep-
� Matlab code and supplementary material are available at http://www.fit.vutbr. 

cz/ ∼ipribyl/DLT- based- PnL/ . 
∗ Corresponding author. 

E-mail addresses: ipribyl@fit.vutbr.cz (B. P ̌ribyl), zemcik@fit.vutbr.cz (P. Zem ̌cík), 

cadik@fit.vutbr.cz (M. Čadík). 
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tit et al., 2009; Valeiras et al., 2016 ). Camera pose can also be esti-

ated using line correspondences, which is called the Perspective-

-Line (PnL) problem. The PnP approach has been studied first, as

oints are easier to handle mathematically than lines. PnP however

s limited only to cases with enough distinctive points, i. e. mainly

o well textured scenes. Conversely, the PnL approach is suitable

or texture-less scenes, e. g. for man-made and indoor environ-

ents. Moreover, line features are more stable than point features

nd are robust to (partial) occlusions. 

When estimating camera pose “from scratch”, the following

ipeline is typically used: (i) obtain tentative feature correspon-

ences, (ii) filter out outliers, (iii) compute a solution from all in-

iers, and (iv), optionally, iteratively refine the solution, e. g. by

inimizing reprojection error. Task (ii) is usually carried out by it-

rative solving of a problem with a minimal number of line corre-

pondences (i. e. P3L) in a RANSAC loop. Task (iii), on the other

and, requires solving a problem with high number of lines. In

ome applications, the correspondences are already known and

hus only task (iii) is to be solved. 

In recent years, versatile PnL methods have been developed

hich are suitable for both of these tasks. Remarkable progress has

een achieved ( Ansar and Daniilidis, 2003; Mirzaei and Roumelio-

is, 2011; Zhang et al., 2013 ), mainly in accuracy of the methods, in

heir robustness to image noise, and in their effectiveness. These

http://dx.doi.org/10.1016/j.cviu.2017.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2017.05.002&domain=pdf
http://www.fit.vutbr.cz/~ipribyl/DLT-based-PnL/
mailto:ipribyl@fit.vutbr.cz
mailto:zemcik@fit.vutbr.cz
mailto:cadik@fit.vutbr.cz
http://dx.doi.org/10.1016/j.cviu.2017.05.002
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ethods are outperformed in task (iii) however, by LPnL meth-

ds – methods based on a linear formulation of the PnL problem

 P ̌ribyl et al., 2015; Xu et al., 2016 ). LPnL methods are superior in

erms of both accuracy and computational speed in camera pose

stimation from many ( ∼ tens to thousands) line correspondences.

he oldest LPnL method is that proposed by Hartley and Zisser-

an (2004 , p. 180), followed recently by the method of P ̌ribyl et al.

2015) . Even more recently, Xu et al. (2016) introduced a series of

PnL methods generated by the use of Cartesian or barycentric co-

rdinates, and by alternating whether the solution is retrieved in

losed form or by optimization. As we show in this paper, space

or improving accuracy of the methods still exists. 

In this paper, we introduce a novel method based on linear

ormulation of the PnL problem, which is a combination of the

LT-Lines method of Hartley and Zisserman (2004) and the DLT-

lücker-Lines method of P ̌ribyl et al. (2015) . The former represents

he 3D structure by 3D points, while the latter represents it by 3D

ines parameterized by Plücker coordinates. The proposed method

xploits the redundant representation of 3D structure by both 3D

oints and 3D lines, which leads to the reduction of the minimum

equired line correspondences to 5. A cornerstone of the method

s a combined projection matrix recovered by the DLT algorithm.

t contains multiple estimates of camera orientation and transla-

ion, enabling a more accurate estimation of the final camera pose.

he proposed method achieves state-of-the-art accuracy for large

ine sets under strong image noise, and it performs comparably to

tate-of-the-art methods on real world data. The proposed method

lso keeps the common advantage of LPnL methods – being very

ast. 

The rest of this paper is organized as follows. We present a re-

iew of related work on PnL in Section 2 . Then we introduce math-

matical notation and Plücker coordinates of 3D lines, and show

ow points and lines transform and project onto the image plane

n Section 3 . In Section 4 , we explain the application of DLT al-

orithm to the PnL problem in general, and we describe the ex-

sting methods DLT-Lines and DLT-Plücker-Lines. In Section 5 , we

ropose the novel method DLT-Combined-Lines. We evaluate the

erformance of the proposed method using simulations and real-

orld experiments in Section 6 , and we conclude in Section 7 . 

. Related work 

The task of camera pose estimation from line correspondences

as been receiving attention for more than a quarter of century.

ome of the earliest works are those by Dhome et al. (1989) and

iu et al. (1990) . They introduce two different ways to deal with

he PnL problem – algebraic and iterative approaches – both of

hich have different properties and thus also different uses. A spe-

ific subset of algebraic approaches are the methods based on lin-

ar formulation of the PnL problem. 

.1. Iterative methods 

The iterative approaches consider pose estimation as a nonlin-

ar least squares problem by iteratively minimizing specific error

unction, which usually has a geometrical meaning. In the early

ork of Liu et al. (1990) , the authors attempted to estimate the

amera position and orientation separately developing a method

alled R_then_T. Later on, Kumar and Hanson (1994) introduced

 method called R_and_T for simultaneous estimation of camera

osition and orientation, and proved its superior performance to

_then_T. Recently, Zhang et al. (2016) proposed two modifications

f the R_and_T algorithm exploiting the uncertainty properties of

ine segment endpoints. Several other iterative methods are also

apable of simultaneous estimation of pose parameters and line

orrespondences, e. g. David et al. (2003) and Zhang et al. (2012) .
hey pose an orthogonal approach to the common RANSAC-based

orrespondence filtering and consecutive separate pose estimation.

Iterative algorithms suffer from two common major issues

hen not initialized accurately: They converge slowly, and more

everely, the estimated pose is often far from the true camera pose,

nding only a local minimum of the error function. This makes it-

rative approaches suitable for final refinement of an initial solu-

ion, provided by some other algorithm. 

.2. Algebraic methods 

The algebraic approaches estimate the camera pose by solving a

ystem of (usually polynomial) equations, minimizing an algebraic

rror. Their solutions are thus not necessarily geometrically opti-

al; on the other hand, no initialization is needed. 

Among the earliest effort s in this field are those of Dhome et al.

1989) and Chen (1990) . Both methods solve the minimal problem

f pose estimation from 3 line correspondences in a closed form.

olutions of the P3L problem are multiple: up to 8 solutions may

xist ( Chen, 1990 ). Unfortunately, neither method is able to exploit

ore measurements to remove the ambiguity, and both methods

re sensitive to presence of image noise. 

Ansar and Daniilidis (2003) developed a method that is able to

andle 4 or more lines, limiting the number of possible solutions

o 1. Lifting is employed to convert a polynomial system to linear

quations in the entries of a rotation matrix. This approach may,

owever, fail in cases of singular line configurations (e. g. lines in

 orthogonal directions – Navab and Faugeras, 1993 ) as the un-

erlying polynomial system may have multiple solutions. The al-

orithm has quadratic computational complexity ( O ( n 2 ), where n

s the number of lines), which renders it impractically slow for

rocessing higher numbers of lines. The method also becomes un-

table with increasing image noise, eventually producing solutions

ith complex numbers. 

Recently, two major improvements of algebraic approaches have

een achieved. First, Mirzaei and Roumeliotis (2011) proposed a

ethod, which is more computationally efficient ( O ( n )), behaves

ore robustly in the presence of image noise, and can handle the

inimum of 3 lines, or more. A polynomial system with 27 can-

idate solutions is constructed and solved through the eigende-

omposition of a multiplication matrix. Camera orientations having

he least square error are considered to be the optimal ones. Cam-

ra positions are obtained separately using linear least squares. A

eakness with this algorithm is that it often yields multiple solu-

ions. Also, despite its linear computational complexity, the overall

omputational time is still high due to slow construction of the

ultiplication matrix, which causes a high constant time penalty:

8 ms / 10 lines. 

The second recent improvement is the Robust PnL ( RPnL ) algo-

ithm of Zhang et al. (2013) . Their method works with 4 or more

ines and is more accurate and robust than the method of Mirzaei

nd Roumeliotis. An intermediate model coordinate system is used

n the method of Zhang et al., which is aligned with a 3D line

f longest projection. The lines are divided into triples, for each

f which a P3L polynomial is formed. The optimal solution of the

olynomial system is selected from the roots of its derivative in

erms of a least squares residual. 

The RPnL algorithm was later modified by Xu et al. (2016) into

he Accurate Subset based PnL ( ASPnL ) algorithm, which acts more

ccurately on small line sets. However, it is very sensitive to out-

iers, limiting its performance on real-world data. This algorithm is

ompared to other state-of-the-art methods in Section 6 . A draw-

ack of both RPnL and ASPnL is that their computational time in-

reases strongly for higher number of lines – from 8 ms / 10 lines

o 630–880 ms / 10 0 0 lines. 
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2.3. Methods based on linear formulation of PnL 

A specific subset of algebraic methods are methods exploiting a

linear formulation of the PnL problem (LPnL). Generally, the meth-

ods solve a system of linear equations, the size of which is di-

rectly proportional to the number of measurements. The biggest

advantage of LPnL methods is their computational efficiency, mak-

ing them fast for both low and high number of lines. 

The most straightforward way to solve LPnL is the Direct Lin-

ear Transformation (DLT) algorithm ( Hartley and Zisserman, 2004 ).

It transforms the measured line correspondences into a homoge-

neous system of linear equations, whose coefficients are arranged

into a measurement matrix. The solution then lies in the nullspace

of the matrix. A necessary condition to apply any DLT method on

noisy data is to prenormalize the input in order to ensure that the

entries of the measurement matrix are of equal magnitude. Other-

wise, the method will be oversensitive to noise and it will produce

results arbitrarily far from the true solution. 

The first DLT method for solving PnL is the method of Hartley

and Zisserman (2004 , p. 180). Following the terminology of Silva

et al. (2012) , we call the method DLT-Lines . It does not act directly

on 3D lines, but rather on 3D points lying on 3D lines (for exam-

ple line endpoints). It exploits the fact that if a 3D line and a 3D

point coincide, their projections also must coincide. The DLT-Lines

method requires at least 6 line correspondences. 

Recently, P ̌ribyl et al. (2015) developed a DLT method, which

acts on 3D lines directly. The lines are parameterized using Plücker

coordinates, hence the name of the method is DLT-Plücker-Lines .

The method yields more accurate estimates of camera orientation

than DLT-Lines at the cost of a bit larger reprojection error and

slightly lower computational efficiency. Also, the minimum number

of lines required is 9. 

Even more recently, Xu et al. (2016) introduced a new set of

methods exploiting the linear formulation of the PnL problem. The

authors were inspired by the state-of-the-art PnP solver working

on the same principle ( Ferraz et al., 2014 ). Similarly to DLT-Lines,

the new methods act on 3D points and 2D lines. The methods of

Xu et al. (2016) can be categorized by two criteria. Firstly, by pa-

rameterization of 3D points (either by Cartesian or by barycen-

tric coordinates – this is denoted in the method’s names by DLT

and Bar , respectively). Secondly, by the manner in which a solu-

tion is obtained from the nullspace. The solution is either an exact

rank-1 nullspace computed in closed form using homogeneous lin-

ear least squares 1 , or it is estimated from an “effective nullspace”

( Lepetit et al., 2009 ) of a dimension 1 – 4 (higher dimensions typ-

ically occurring under the presence of noise). This is denoted in

the method’s names by LS and ENull , respectively. All the follow-

ing methods require at least 6 line correspondences, although the

effective null space solver (ENull) is sometimes able to recover the

correct solution of an underdetermined system defined by 4 or 5

lines. The four LPnL methods of Xu et al. are the following: 

LPnL_DLT_LS parameterizes 3D points using Cartesian coordi-

nates, and it uses homogeneous linear least squares to recover the

solution: entries of the rotation matrix and translation vector. This

is exactly the same algorithm as DLT-Lines (Hartley and Zisserman,

2004, p. 180) , so we use the name DLT-Lines to refer to the method

in the rest of the paper. 

LPnL_DLT_ENull parameterizes 3D points using Cartesian coor-

dinates, and it uses the effective nullspace solver ( Lepetit et al.,

2009 ) to recover the solution: entries of the rotation matrix and

translation vector. It achieves higher accuracy than DLT-Lines. 
1 We use the term “homogeneous linear least squares” to denote solving of a 

homogeneous linear system M p = 0 for p which is done by minimization of || M p || 
subject to || p || = 1 . The correct notation, however somewhat confusing, would be a 

“low-rank approximation” (of M ). 

3

 

o  
LPnL_Bar_LS parameterizes 3D points using barycentric coordi-

ates, which depend on the position of 4 arbitrarily chosen con-

rol points. Position of the control points with respect to camera is

olved using homogeneous linear least squares. Alignment of the

 camera- and world-referred control points defines the camera

ose. Accuracy of the method is similar to DLT-Lines. 

LPnL_Bar_ENull parameterizes 3D points using barycentric co-

rdinates. Position of the 4 control points with respect to cam-

ra is solved using the effective nullspace solver. Alignment of the

 camera- and world-referred control points defines the camera

ose. The method is even more accurate than LPnL_Bar_LS. 

In this paper, we exploit the common properties of DLT-Lines

nd DLT-Plücker-Lines methods and we combine them into a new

ethod DLT-Combined-Lines . As a result, the minimal number of

ine correspondences required by the proposed method is reduced

o 5, position of the camera is estimated more accurately under

trong image noise than by the existing most accurate method

LPnL_Bar_ENull), and the method yields lower reprojection error.

ccuracy of orientation estimates is similar to the state-of-the-art

ethod. The proposed method also benefits from the common ad-

antage of all LPnL methods – being very fast. 

. Transformations of points and lines 

In this section, we introduce notation, define coordinate sys-

ems, and also define parameterization of 3D lines using Plücker

oordinates. Then, we review how points and lines are transformed

n Euclidean space, and how they project onto the image plane us-

ng central projection. 

.1. Notation and coordinate systems 

Scalars are typeset in italics ( x, X ), vectors are typeset in bold

 l, L ). All vectors are thought of as being column vectors unless

xplicitly transposed. Matrices are typeset in sans-serif fonts ( t ,

 ), the identity matrix is denoted by I . 2D entities are denoted by

ower case letters ( x , l , t ), 3D entities by upper case letters ( X , L ,

 ). No formal distinction between coordinate vectors and physical

ntities is made. Equality of up to a non-zero scale factor is de-

oted by ≈, transposition by � , Euclidean norm of a vector by ||.||,

ronecker product by �, vectorization of a matrix in column-major

rder by “vec(.)”, and the skew symmetric 3 × 3 matrix associated

ith the cross product by [.] ×, i. e. [ a ] ×b = a × b . Transformation

atrices acting on points and lines are distinguished by a dot and

 bar, respectively ( ̇ D , D̄ ). 

Let us now define the coordinate systems: a world coordinate

ystem and a camera coordinate system. Both systems are right-

anded. The camera X -axis goes right, the Y -axis goes up and the

 -axis goes behind the camera, so that the points placed in front

f the camera have negative Z coordinates in the camera coordi-

ate system. A transition from the world to the camera coordi-

ate system is realized through a translation followed by a rota-

ion. The translation is parameterized using a 3 × 1 translation vec-

or T = (T 1 T 2 T 3 ) 
� , which represents the position of the camera in

he world coordinate system. The rotation is parameterized using

 3 × 3 rotation matrix R describing the orientation of the camera

n the world coordinate system by means of three consecutive ro-

ations along the three axes Z, Y, X by respective Euler angles �, B,

 . Camera pose is thus parameterized by T 1 , T 2 , T 3 , A, B, �. 

In the following sections, a pinhole camera with known intrin-

ic parameters is assumed. 

.2. Transformation of a point 

A homogeneous 3D point X = (X 1 X 2 X 3 X 4 ) 
� in the world co-

rdinate system is transformed to a point ˙ D X in the camera coor-
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Fig. 1. 3D line projection. The 3D line L is parameterized by its direction vector V 

and a normal U of its interpretation plane, which passes through the origin of the 

camera coordinate system { C }. Since the projected 2D line l lies at the intersection 

of the interpretation plane and the image plane, it is fully defined by the normal U . 
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inate system using a 4 × 4 point displacement matrix ˙ D , where

˙ 
 ≈

[
R −R T 

0 1 ×3 1 

]
. (1) 

fter 3D points are transformed into the camera coordinate sys-

em, they can be projected onto the normalized image plane us-

ng the 3 × 4 canonical camera matrix (I 0 ) . Compositing the two

ransformations yields the 3 × 4 point projection matrix 

˙ 
 ≈

[
R −R T 

]
. (2) 

 3D point X is then projected using the point projection matrix ˙ P

s 

 ≈ ˙ P X , (3) 

here x = (x 1 x 2 x 3 ) 
� is a homogeneous 2D point in the normal-

zed image plane. 

.3. Plücker coordinates of 3D lines 

3D lines can be represented using several parameterizations in

he projective space ( Bartoli and Sturm, 2005 ). Parameterization

sing Plücker coordinates is complete (i. e. every 3D line can be

epresented) but not minimal (a 3D line has 4 degrees of freedom

ut Plücker coordinate is a homogeneous 6-vector). The benefit of

sing Plücker coordinates is in convenient linear projection of 3D

ines onto the image plane. 

Given two distinct 3D points X = (X 1 X 2 X 3 X 4 ) 
� and Y =

(Y 1 Y 2 Y 3 Y 4 ) 
� in homogeneous coordinates, a line joining them

an be represented using Plücker coordinates as a homogeneous

-vector L ≈ (U 

� V 

� ) � = (L 1 L 2 L 3 L 4 L 5 L 6 ) 
� , where 

 

� = (L 1 L 2 L 3 ) = (X 1 X 2 X 3 ) × (Y 1 Y 2 Y 3 ) , 

V 

� = (L 4 L 5 L 6 ) = X 4 (Y 1 Y 2 Y 3 ) − Y 4 (X 1 X 2 X 3 ) . (4) 

he V part encodes direction of the line while the U part encodes

osition of the line in space. In fact, U is a normal of an inter-

retation plane – a plane passing through the line and the ori-

in. As a consequence, L must satisfy a bilinear constraint U 

� V = 0 .

xistence of this constraint explains the discrepancy between the

 degrees of freedom of a 3D line and its parameterization by a

omogeneous 6-vector. More on Plücker coordinates can be found

n Hartley and Zisserman (2004) . 

.4. Transformation of a line 

A 3D line parameterized using Plücker coordinates can be trans-

ormed from the world into the camera coordinate system using

he 6 × 6 line displacement matrix D̄ ( Bartoli and Sturm, 2004 ), 2 

here 

¯
 ≈

[
R R [ −T ] ×
0 3 ×3 R 

]
. (5) 

fter 3D lines are transformed into the camera coordinate system,

heir projections onto the image plane can be determined as inter-

ections of their interpretation planes with the image plane; see

ig. 1 for illustration. The normal U of an interpretation plane is

dentical to the image line l in the coordinate system of the cam-

ra, hence only U needs to be computed when projecting L , and

nly the upper half of D̄ is needed, yielding the 3 × 6 line projec-

ion matrix ( Faugeras and Mourrain, 1995 ) 

¯
 ≈

[
R R [ −T ] ×

]
. (6) 
2 Please note that our line displacement matrix differs slightly from the matrix of 

artoli and Sturm (2004 , Eq. (6) ), namely in the upper right term: We have R [ −T ] ×
nstead of [ T ] ×R due to our different coordinate system. 

(  

p  

p  

e

A 3D line L is then projected using the line projection matrix P̄

s 

 ≈ P̄ L , (7) 

here l = (l 1 l 2 l 3 ) 
� is a homogeneous 2D line in the normalized

mage plane. 

. Pose estimation using DLT 

We will first describe DLT methods in general in Section 4.1 and

how the common steps. Then, we will describe the DLT-Lines

ethod in Section 4.2 and the DLT-Plücker-Lines method in

ection 4.3 . Finally, we will briefly describe an algebraic scheme

o deal with outlying line correspondences in Section 4.4 . 

.1. General structure of DLT 

Let us assume that we have (i) a calibrated pinhole camera and

ii) correspondences between 3D lines (or 3D points lying on those

ines) and images of the lines obtained by the camera. Given these

equirements, it is possible to estimate the camera pose using a

LT method. The methods have the following steps in common: 

1. Input data are prenormalized to achieve good conditioning of

the linear system. 

2. A projection matrix is estimated using homogeneous linear

least squares, and the effect of prenormalization is reverted. 

3. The pose parameters are extracted from the estimated projec-

tion matrix. This also includes constraint enforcement in the

case of noisy data, since the constraints are not taken into ac-

count during the least squares estimation. 

.1.1. Prenormalization 

Since the DLT algorithm is sensitive to the choice of coordi-

ate system, it is crucial to prenormalize the data to get a prop-

rly conditioned measurement matrix M ( Hartley, 1997 ). Various

ransformations can be used, but the optimal ones are unknown.

n practice, however, the goal is to reduce large absolute values

f point/line coordinates. This is usually achieved by centering the

ata around the origin and by scaling them so that an average co-

rdinate has the absolute value of 1. 

Specific prenormalizing transformations are proposed for each

ethod in the following sections. 

.1.2. Linear estimation of a projection matrix 

As a starting point, a system of linear equations needs to be

onstructed, which relates (prenormalized) 3D entities with their

prenormalized) image counterparts through a projection matrix,

enoted P . This might be the projection of homogeneous 3D points

 ≈ ˙ P X in Eq. (3) , or the projection of Plücker lines l ≈ P̄ L in Eq.

7) , or any other linear system, or some combination of these. The

roblem of camera pose estimation now resides in estimating the

rojection matrix P , which encodes all the six camera pose param-

ters T , T , T , A, B, �. 
1 2 3 
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The system of linear equations is transformed so that only a

zero vector remains at the right hand side (see Appendix A for de-

tails). The transformed system can be written in the form 

M p = 0 , (8)

where M is a measurement matrix containing coefficients of equa-

tions generated by correspondences between 3D entities and their

image counterparts. Each of the n correspondences gives rise to

a number of independent linear equations (usually 2), and thus

to the same number of rows of M . The number of columns of M

equals d , which is the number of entries contained in P . The size of

M is thus 2 n × d . Eq. (8) is then solved for the d -vector p = vec (P ) .

Eq. (8) , however, holds only in the noise-free case. If a noise is

present in the measurements, an inconsistent system is obtained:

M p 

′ = ε . (9)

Only an approximate solution p 

′ may be found through minimiza-

tion of a 2 n -vector of measurement residuals ε in the least squares

sense, subject to || p 

′ || = 1 . 

Once the system of linear equations given by (9) is solved, e. g.

by Singular Value Decomposition (SVD) of M , the estimate P 

′ of

the projection matrix P can be recovered from the d -vector p 

′ . 

4.1.3. Extraction of pose parameters 

The estimate P 

′ of a projection matrix P obtained as a solution

of (9) does not satisfy the constraints imposed on P . In fact, P has

only 6 degrees of freedom – the 6 camera pose parameters T 1 , T 2 ,

T 3 , A, B, �. P has, however, more entries: The 3 × 4 point projec-

tion matrix ˙ P has 12 entries and the 3 × 6 line projection matrix P̄

has 18 entries. This means that the projection matrices have 6 and

12 independent linear constraints, respectively, see Eqs. (2) and ( 6 ).

The first six constraints are imposed by the rotation matrix R that

must satisfy the orthonormality constraints (unit-norm and mutu-

ally orthogonal rows). The other six constraints in the case of P̄ are

imposed by the skew-symmetric matrix [ −T ] × (three zeros on the

main diagonal and antisymmetric off-diagonal elements). 

In order to extract the pose parameters, the scale of P 

′ has to

be corrected first, since p 

′ is usually of unit length as a minimizer

of ε in Eq. (9) . The correct scale of P 

′ can only be determined from

the part which does not contain the translation T . In both cases of
˙ P and P̄ , it is the left 3 × 3 submatrix P 

′ 
1 

– an estimate of a rota-

tion matrix R . We recommend a method of scale correction based

on the fact that all three singular values of a proper rotation ma-

trix should be 1, see Algorithm 1 . Alternatively, the scale can also

Algorithm 1 Scale correction of a projection matrix. 

Input: An estimate P 

′ of a projection matrix, possibly wrongly

scaled and without the constraints being fulfilled. 

1: P 

′ 
1 

← left 3 × 3 submatrix of P 

′ 
2: UΣV 

� ← SVD (P 

′ 
1 
) 

3: s ← 1 / mean ( diag (Σ)) 

Output: s P 

′ . 

be corrected so that det (s P 

′ 
1 
) = 1 , but Algorithm 1 proved more

robust in practice. 

Further steps in the extraction of pose parameters differ in each

method, they are thus part of the description of each method in

the following sections. 

4.2. DLT-Lines 

This is the method introduced by Hartley and Zisserman (2004 ,

p. 180). It exploits the fact that a 3D point X lying on a 3D line

L projects such that its projection x = 

˙ P X must also lie on the
rojected line: l � x = 0 . Putting this together yields the constraint

quation 

 

� ˙ P X = 0 . (10)

he pose parameters are encoded in the 3 × 4 point projection ma-

rix ˙ P , see Eq. (2) . Since ˙ P has 12 entries, at least 6 lines are re-

uired to fully determine the system, each line with 2 or more

oints on it. 

.2.1. Prenormalization 

The known quantities of Eq. (10) , i. e. the coordinates of 3D

oints and 2D lines, need to be prenormalized. In the case of the

LT-based pose estimation from points, Hartley (1998) suggests to

ranslate and scale both 3D and 2D points so that their centroid is

t the origin and their average distance from the origin is 
√ 

3 and
 

2 , respectively. By exploiting the principle of duality ( Coxeter,

003 ), we suggest treating coordinates of 2D lines as homogeneous

oordinates of 2D points, and then following Hartley in the prenor-

alization procedure – i. e. to apply translation and anisotropic

caling. 

.2.2. Linear estimation of the point projection matrix 

The point projection matrix ˙ P and its estimate ˙ P 

′ are 3 × 4, so

he corresponding measurement matrix ˙ M is n × 12, where n is the

umber of point-line correspondences X i ↔ l i , (i = 1 . . . n, n ≥ 11) .
˙ 
 is constructed as 

˙ 
 (i, :) = X 

� 
i � l � i , (11)

here ˙ M (i, :) denotes the i -th row of ˙ M in Matlab notation. See

ppendix A.3 for a derivation of Eq. (11) . The 3D points X i must

e located on at least 6 different lines. 

.2.3. Extraction of pose parameters 

First, the scale of ˙ P 

′ is corrected using Algorithm 1 , yielding s ̇ P 

′ .
hen, the left 3 × 3 submatrix of s ̇ P 

′ is taken as the estimate R 

′ of

 rotation matrix. A nearest rotation matrix R is found in the sense

f the Frobenius norm using Algorithm 2 . 

lgorithm 2 Orthogonalization of a 3 × 3 matrix. 

nput: A 3 × 3 estimate R 

′ of a rotation matrix R . 

1: UΣV 

� ← SVD (R 

′ ) 
2: d ← det (UV 

� ) 
3: R ← dUV 

� 

utput: R . 

Please note that Algorithms 1 and 2 can be combined and ex-

cuted at once. The remaining pose parameter to recover is the

ranslation vector T , which is encoded in the fourth column 

˙ P 

′ 
4 

of

˙ 
 

′ , see Eq. (2) . It is recovered as T = s R 

� ˙ P 

′ 
4 
, completing the extrac-

ion of pose parameters. 

.3. DLT-Plücker-Lines 

This is the method introduced by P ̌ribyl et al. (2015) . It exploits

he linear projection of 3D lines parameterized using Plücker co-

rdinates onto the image plane, as described in Section 3.3 . The

onstraint equation defines the formation of 2D lines l as projec-

ions of 3D lines L , as defined in Eq. (7) : 

 ≈ P̄ L . (12)

he pose parameters are encoded in the 3 × 6 line projection ma-

rix P̄ , see Eq. (6) . Since P̄ has 18 entries, at least 9 lines are re-

uired to fully determine the system. 
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Algorithm 3 Extraction of pose parameters from the estimate P̄ 

′ 
of a line projection matrix (inspired by Tsai and Huang, 1984 ). 

Input: An estimate P̄ 

′ of a line projection matrix P̄ . 

Input: Corrective scale factor s . 

1: P̄ 

′ 
2 

← right 3 × 3 submatrix of P̄ 

′ 
2: UΣV 

� ← SVD (s ̄P 

′ 
2 ) 

3: Z ← 

[ 

0 1 0 

−1 0 0 

0 0 0 

] 

, W ← 

[ 

0 −1 0 

1 0 0 

0 0 1 

] 

, 

q ← (Σ1 , 1 + Σ2 , 2 ) / 2 

4: Compute 2 candidate solutions (A, B): 

R A ← UW diag (1 1 ± 1) V 

� , [ T ] ×A ← q VZ V 

� 

R B ← UW 

� diag (1 1 ± 1) V 

� , [ T ] ×B ← q VZ 

� V 

� 

5: Accept the physically plausible solution, so that the scene lies 

in front of the camera. 

R ← R A , T ← T A or 

R ← R B , T ← T B . 

Output: R , T . 
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.3.1. Prenormalization 

The known quantities of Eq. (12) , i. e. the Plücker coordinates

f 3D lines, and the coordinates of 2D lines, need to be prenor-

alized. Since the homogeneous Plücker coordinates of a 3D line

 cannot be treated as homogeneous coordinates of a 5D point

because of the bilinear constraint, see Section 3.3 ), we suggest

he following prenormalization: Translation and scaling, which can

e applied through the line similarity matrix ( Bartoli and Sturm,

004 ), affects only the U part of L . Therefore, the V parts are ad-

usted first by multiplying each L by a non-zero scale factor so

hat || V || = 

√ 

3 . Then, translation is applied to minimize the av-

rage magnitude of U . Since || U || decreases with the distance of L

rom the origin, it is feasible to translate the lines so that the sum

f squared distances from the origin is minimized. This can be effi-

iently computed using the Generalized Weiszfeld algorithm ( Aftab

t al., 2015 ). Finally, anisotropic scaling is applied so that the aver-

ge magnitude of U matches the average magnitude of V . 

Prenormalization of 2D lines can be carried out in the same

ay as in the case of the DLT-Lines method, see Section 4.2 . 

.3.2. Linear estimation of the line projection matrix 

The line projection matrix P̄ and its estimate P̄ 

′ are 3 × 6, so

he corresponding measurement matrix M̄ has 18 columns. The

umber of its rows depends on the number m of line-line corre-

pondences L j ↔ l j , ( j = 1 . . . m, m ≥ 9) . By exploiting Eq. (12) , each

orrespondence generates three rows of M̄ (Matlab notation is used

o index the matrix elements): 

¯
 (3 j−2 : 3 j, :) = L � j � [ l j ] × . (13)

he line measurement matrix M̄ is thus 3 m × 18. 3 See

ppendix A.1 for a derivation of Eq. (13) . 

.3.3. Extraction of pose parameters 

First, the scale of P̄ 

′ is corrected using Algorithm 1 , yielding

 ̄P 

′ . Then, the camera pose parameters are extracted from the

ight 3 × 3 submatrix of s ̄P 

′ , which is an estimate of a skew-

ymmetric matrix premultiplied by a rotation matrix (i. e. R [ −T ] ×,

ee Eq. (6) ). Since this is the structure of the essential matrix

 Longuet-Higgins, 1981 ), we propose the algorithm of Tsai and

uang (1984) to decompose it, as outlined in Algorithm 3 . This

ompletes the extraction of pose parameters. 

The variable q = (�1 , 1 + �2 , 2 ) / 2 in Algorithm 3 is an average

f the first two singular values of s ̄P 

′ 
2 to approximate the singular

alues of a properly constrained essential matrix, which should be

 q, q , 0). The ± 1 term in Step 4 of Algorithm 3 denotes either

1 or −1 which has to be put on the diagonal so that det (R A ) =
et (R B ) = 1 . 

Alternative ways of extracting the camera pose parameters from

 ̄P 

′ exist, e. g. computing the closest rotation matrix R to the left

 × 3 submatrix of s ̄P 

′ 
1 and then computing [ T ] × = −R 

� s ̄P 

′ 
2 . How-

ver, our experiments showed that the alternative ways are less

obust when dealing with image noise. Therefore, we have chosen

he solution described in Algorithm 3 . 

.4. Algebraic outlier rejection 

In practice, mismatches of lines (i. e. outlying correspondences)

ften occur, which degrades the performance of camera pose esti-

ation. The RANSAC algorithm is commonly used to identify and

emove outliers; however, as the LPnL methods work with 5 or
3 Note that only two of the three rows of M̄ defined by Eq. (13) are needed for 

ach line-line correspondence, because they are linearly dependent. M̄ would be 

nly 2 m × 18 in this case. 

q

 

w  

e  

m  
ore line correspondences, they cannot compete with the mini-

al (P3L) methods when plugged into a RANSAC-like framework

ue to the increased number of iterations required. 

For this reason, an alternative scheme called Algebraic Outlier

ejection (AOR, Ferraz et al., 2014 ) may be used instead. It is an

terative approach integrated directly into the pose estimation pro-

edure (specifically, into solving Eq. (9) in Section 4.1 in form of

teratively reweighted least squares). Incorrect correspondences are

dentified as outlying based on the residual ε i of the least squares

olution in Eq. (9) . Correspondences with residuals above a prede-

ned threshold εmax are assigned zero weights, which effectively

emoves them from processing in the next iteration, and the solu-

ion is recomputed. This is repeated until the error of the solution

tops decreasing. 

The strategy for choosing εmax may be arbitrary, but our exper-

ments showed that the strategy εmax = Q j (ε1 , . . . , εn ) has a good

radeoff between robustness and the number of iterations. Q j ( ·) de-

otes the j th quantile, where j decreases following the sequence

0.9, 0.8, . . . , 0.3) and then it remains constant 0.25 until error

f the solution stops decreasing. This strategy usually leads to ap-

roximately 10 iterations. 

emark 1. It is important not to prenormalize the data in this case

ecause it will impede the identification of outliers. Prenormaliza-

ion of inliers should be done just before the last iteration. 

Compared to RANSAC, the benefit of this approach is a low run-

ime independent of the fraction of outliers. On the other hand, the

reak-down point is somewhere between 40% and 70% of outliers,

epending on the underlying LPnL method, whereas RANSAC can

andle any fraction of outliers in theory. 

. DLT-Combined-Lines 

In this section, we introduce the novel method DLT-Combined-

ines. It is a combination of DLT-Lines and DLT-Plücker-Lines, ex-

loiting the redundant representation of 3D structure in the form

f both 3D points and 3D lines. The 2D structure is represented

y 2D lines. The outcome is a higher accuracy of the camera pose

stimates, smaller reprojection error, and lower number of lines re-

uired. 

The central idea is to merge two systems of linear equations,

hich share some unknowns, into one system. The unknowns are

ntries of the point projection matrix ˙ P and the line projection

atrix P̄ . The two systems defined by Eqs. (10) and (12) can be
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4 Note that only two of the three rows of M̈ defined by Eq. (20) are needed 

for each line-line correspondence, because they are linearly dependent. Our exper- 

iments showed that using all three rows brings no advantage, so we use only two 

of them in practice. In this case, M̈ is only (n + 2 m ) × 21 . 
merged so that the set of unknowns of the resulting system is

formed by the union of unknowns of both systems. It can be ob-

served that the shared unknowns reside in the left 3 × 3 submatri-

ces of ˙ P and P̄ . If unknowns of the resulting system are arranged in

a feasible manner, a new 3 × 7 matrix P̈ can be constructed, which

is a “union” of ˙ P and P̄ : 

˙ P ≈ [ R −R T ] 
P̄ ≈ [ R R [ −T ] ×] 

}
P̈ ≈

[
R −R T R [ −T ] ×

]
(14)

We call the matrix a “combined projection matrix”, because it al-

lows us to write projection equations for point-line, line-line, and

even point-point correspondences, as follows: 

l � P̈ 

(
X 

� 0 0 0 

)� = 0 , (15)

l ≈ P̈ 

(
U 

� 0 V 

� )� 
, (16)

x ≈ P̈ 

(
X 

� 0 0 0 

)� 
. (17)

These equations can then be used to estimate P̈ linearly from the

correspondences, as shown in detail in Section 5.1 . 

Higher accuracy of pose estimates using the proposed method

stems from the fact that the left-most R in P̈ is determined by

twice as many equations, and also from the fact that P̈ con-

tains multiple estimates of R and T . This is further investigated in

Section 5.3 . 

The other benefit is that the method requires only 5 lines (and

10 points across them) – less than DLT-Plücker-Lines and even less

then DLT-Lines. To explain why, we first define the following matri-

ces: the left-most 3 × 3 submatrix of P̈ is denoted P̈ 1 , the middle

3 × 1 submatrix (column vector) is denoted P̈ 2 , and the right-most

3 × 3 submatrix is denoted P̈ 3 . 

P̈ = 

[
R −R T R [ −T ] ×

]
= 

[
P̈ 1 P̈ 2 P̈ 3 

]
(18)

P̈ has 21 entries, but since it encodes the camera pose, it has only

6 DoF. This means it has 14 nonlinear constraints (homogeneity of

the matrix accounts for the 1 remaining DoF). Ignoring the non-

linear constraints, which are not taken into account during the

least squares estimation, P̈ has 20 DoF. Each point-line correspon-

dence generates 1 independent linear Eq. (15) and each line-line

correspondence generates 2 independent linear Eq. (16) . Since P̈ 2 

is determined only by point-line correspondences and since it has

3 DoF, at least 3 3D points are required to fully determine it. An

analogy holds for P̈ 3 : since it is determined only by line-line cor-

respondences and since it has 9 DoF, at least 5 (in theory 4 1/2)

3D lines are required to fully determine it. The required number

of m line-line correspondences and n point-line correspondences is

thus m = 9 , n = 3 , or m = 5 , n = 10 , or something in between satisfy-

ing the inequality (n + 2 m ) ≥ 20 . In such minimal cases, the points

must be distributed equally among the lines, i. e. each point or

two must lie on a different line; otherwise, the system of equa-

tions would be underdetermined. 

We now proceed with the description of the algorithm. Please

notice that the prenormalization procedure will be described in

Section 5.2 , i. e. after the definition of a measurement matrix in

Section 5.1 , because prenormalization is strongly motivated by its

structure. 

5.1. Linear estimation of the combined projection matrix 

The combined projection matrix P̈ and its estimate P̈ 

′ are 3 × 7,

so the combined measurement matrix M̈ has 21 columns. The
umber of its rows depends on the number of n point-line cor-

espondences X i ↔ l i , (i = 1 . . . n ) , and on the number of m line-

ine correspondences L j ↔ l j , ( j = n + 1 . . . n + m ) . The minimal val-

es of n and m depend on each other and must satisfy the in-

quality (n + 2 m ) ≥ 20 . Each point-line correspondence (15) leads

o one row of M̈ , and each line-line correspondence (16) gives rise

o three rows of M̈ (Matlab notation is used to index the matrix

lements): 

¨
 (i, :) = (X 

� 
i 0 0 0) � l � i , (19)

¨
 (3 j−n −2 : 3 j−n, :) = (U 

� 
j 0 V 

� 
j ) � [ l j ] ×. (20)

he combined measurement matrix M̈ is thus (n + 3 m ) × 21 . 4 See

ppendix A for derivations of Eqs. (19) and (20) . The combined

easurement matrix M̈ can also be constructed by stacking and

ligning ˙ M and M̄ : 

¨
 = 

[
˙ M n ×12 0 n ×9 

M̄ (: , 1:9) 0 3 m ×3 M̄ (: , 10:18) 

]
(21)

emark 2. It is advisable to scale both 

˙ M and M̄ so that the

ums of squares of their entries are equal. (If they were not, it

ould negatively affect the scales of those parts of the solution

¨
 = vec ( ̈P ) , which are determined exclusively by either ˙ M or M̄ ,

ut not by both of them. These are the entries 10–12 and 13–21 of

¨
 , which contain estimates of translation. See the middle and right

art of P̈ in Eq. (18) .) 

emark 3. The method can easily be extended to point-point cor-

espondences (17) by adding extra rows to M̈ . Each of the p point-

oint correspondences X k ↔ x k , (k = n + m + 1 . . . n + m + p) gener-

tes three rows 

¨
 (3 k −n −m −2 : 3 k −n −m, :) = (X 

� 
i 0 0 0) � [ x i ] × , (22)

wo of which are linearly independent. See Appendix A.2 for a

erivation of Eq. (22) . 

.2. Prenormalization 

Prenormalization of 2D lines is rather complicated. The problem

s that a 2D line l is in the direct form and on the opposite side

rom the line projection matrix P̄ in Eq. (16) , and it is in the trans-

osed form and on the same side as the point projection matrix
˙ 
 in Eq. (15) . Thus, when undoing the effect of a prenormalizing

D transformation t , the inverse transformation is t −1 for P̄ , and

 

� for ˙ P . Since both 

˙ P and P̄ are parts of P̈ , both inverse trans-

ormations must be identical ( t � = t −1 ). However, this only holds

or a 2D rotation, which is practically useless as a prenormalizing

ransformation. We thus suggest not prenormalizing 2D lines at all.

Prenormalization of 3D points and 3D lines is also nontriv-

al, because transformations of 3D space affect the coordinates of

oints and lines differently. However, it can be achieved by pursu-

ng the goal from the beginning of Section 4.1 : to center the data

round the origin by translation, and to scale them so that an av-

rage coordinate has the absolute value of 1. 

Please note that translation and scaling affects only the U part

f a 3D line L , and only the ( X 1 X 2 X 3 ) 
� part of a 3D point X . There-

ore, (i) the unaffected parts ( V and X 4 ) must be adjusted before-

and: Each 3D line and each 3D point is normalized by multiplica-

ion by a non-zero scale factor, so that || V || = 

√ 

3 , and X 4 = 1 . Note
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Algorithm 4 Extraction of pose parameters from the estimate P̈ 

′ 
of a combined projection matrix. 

Input: An estimate P̈ 

′ of a line projection matrix P̈ . 

Input: Corrective scale factor s . 

1: 
[
P̈ 

′ 
1 P̈ 

′ 
2 P̈ 

′ 
3 

]
← P̈ 

′ // divide into submatrices 

2: Extract R 1 from P̈ 

′ 
1 using Algorithm 2. 

3: T 2 = −R 

� 
1 ̃

s ̈P 

′ 
2 

4: Extract R 3 , T 3 from P̈ 

′ 
3 

using Algorithm 3. 

5: R = R 1 · exp (k · log (R 

� 
1 R 3 )) 

T = k · T 2 + (1 − k ) · T 3 
Output: R , T . 
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6

hat this adjustment does not change the spatial properties of 3D

oints/lines. Then, (ii) translation is applied to center the 3D points

round the origin. 5 Although the translation is intuitively correct

it results in zero mean of 3D points), it is not optimal in terms of

ntries of the measurement matrix (joint zero mean of ( X 1 X 2 X 3 ) 
� 

nd U ). Therefore, (iii) another translation is applied to minimize

he average magnitude of ( X 1 X 2 X 3 ) 
� and U . Finally, (iv) anisotropic

caling is applied so that the average magnitudes of all X 1 and L 1 ,

 2 and L 2 , X 3 and L 3 , X 4 and V are equal, i. e. | X 1 | + | L 1 | = | X 2 | +
 L 2 | = | X 3 | + | L 3 | = | X 4 | + (| L 4 | , | L 5 | , | L 6 | ) . This also ensures that the

orresponding blocks of the measurement matrix M̈ will have

qual average magnitude. The very last step of prenormalization

v) is not applied to the input primitives, but to the measurement

atrix after its construction. Its point- and line-related parts ˙ M

nd M̄ should be scaled as stated in Remark 2 above. 

The effects of individual stages of prenormalization on ac-

uracy of the proposed method are experimentally evaluated in

ection 6.3 . 

.3. Extraction of pose parameters 

First, the scale of P̈ 

′ is corrected using Algorithm 1 , yielding

 ̈P 

′ . The estimates of R and T are doubled in s ̈P 

′ , which can be

xploited to estimate the camera pose more robustly. In the fol-

owing, we use the definitions of submatrices P̈ 1 , P̈ 2 , and P̈ 3 from

q. (18) . The first estimate of R is in the direct form in s ̈P 

′ 
1 
, from

hich it can be extracted using Algorithm 2 , yielding R 1 . The first

stimate of T is in s ̈P 

′ 
2 , premultiplied by −R . It can be recovered as

 2 = −R 

� 
1 

s ̈P 

′ 
2 
. The second estimates of R and T are in the form of

n essential matrix in s ̈P 

′ 
3 , from which they can be extracted using

lgorithm 3 , yielding R 3 and T 3 . 

Now, the question is how to combine R 1 , R 3 , and T 2 , T 3 . Our

xperiments showed that R 1 is usually more accurate than R 3 ,

robably because it is determined by twice as many equations

generated by both line-line and point-line correspondences). The

xperiments also showed that T 2 is usually more accurate than T 3 .

e hypothesize this is because P̈ 

′ 
2 has no redundant DoF, contrary

o P̈ 

′ 
3 
, which has 3 redundant DoF. However, the estimates can be

ombined so that the result is even more accurate. Since the er-

or vectors of T 2 and T 3 tend to have opposite direction, a suitable

nterpolation between them can produce a more accurate position

stimate 

 = k · T 2 + (1 − k ) · T 3 . (23)

he value of k should be between 0 and 1. Based on grid search,

n optimal value of 0.7 has been found (the error function has a

arabolic shape). Regarding the rotation estimates, the grid search

iscovered R 1 is indeed more accurate than R 3 . However, R 1 is

ot fully “compatible” with T in terms of reprojection error. 6 Inter-

olating between R 1 and R 3 yields an orientation R “compatible”

ith T : 

 = R 1 · exp (k · log (R 

� 
1 R 3 )) . (24)

ere, “exp” and “log” denote matrix exponential and matrix loga-

ithm, respectively. The whole pose extraction procedure is sum-

arized in Algorithm 4 . 
5 Another possible translation is to center the 3D lines using the Generalized 

eiszfeld algorithm ( Aftab et al., 2015 ). However, our experiments showed that the 

wo possible translations yield nearly identical robustness of the method. We thus 

uggest to translate the 3D structure to the centroid of points, because its compu- 

ation is cheaper. 
6 As an example, imagine a camera located left to its ground truth position and 

riented even more left. 
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. Experimental results 

The accuracy of pose estimates, the computational efficiency of

he methods, and their robustness to image noise and to outliers

ere measured. Accuracy of pose estimates was expressed in terms

f position error and orientation error of the camera, and in terms

f reprojection error of the lines, as each error measure suits differ-

nt applications. For example, robot localization requires a minimal

osition error, visual servoing requires both position and orienta-

ion error to be small, while augmented reality applications prior-

tize a small reprojection error. 

The proposed algorithm was evaluated and compared with the

ollowing state-of-the-art methods: 

1. Ansar , the method by Ansar and Daniilidis (2003) , implemen-

tation from Xu et al. (2016) , results shown in black . 

2. Mirzaei , the method by Mirzaei and Roumeliotis (2011) , results

shown in red . 

3. RPnL , the method by Zhang et al. (2013) , results shown in dark

blue . 

4. ASPnL , the method by Xu et al. (2016) , results shown in light

blue . 

5. LPnL_Bar_LS , the method by Xu et al. (2016) , results shown in

teal . 

6. LPnL_Bar_ENull , the method by Xu et al. (2016) , results shown

in blue-green . 

7. DLT-Lines , the method by Hartley and Zisserman (2004 , p. 180),

our implementation, results shown in purple . 

8. DLT-Plücker-Lines , the method by P ̌ribyl et al. (2015) , our im-

plementation, results shown in green . 

9. DLT-Combined-Lines , the proposed method, results shown in

orange . 

All methods were implemented in Matlab. The implementations

riginate from the respective authors, if not stated otherwise. 

First, we evaluate accuracy, robustness, and efficiency of the

ethods using synthetic lines. Then, we evaluate accuracy of pose

stimates using rendered images and real data. 

.1. Synthetic lines 

Monte Carlo simulations with synthetic lines were performed

nder the following setup: at each trial, m 3D line segments were

enerated by randomly placing n = 2 m line endpoints inside a

ube spanning 10 3 m which was centered at the origin of the

orld coordinate system. For the methods which work with 3D

oints, the endpoints were used. A virtual pinhole camera with

mage size of 640 × 480 pixels and focal length of 800 pixels was
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Fig. 2. Experiments with synthetic lines. Median errors in estimated camera pose as a function of the number of lines, computed from 10 0 0 trials. Orientation errors ( ��, 

top row ), position errors ( �T, middle row ) and reprojection errors ( �π , bottom row ) are depicted for various levels of image noise ( σ = 1 px – 20 px, from left to right ). All 

vertical axes are logarithmic. 
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placed randomly at the distance of 25 m from the origin. The cam-

era was then oriented so that it looked directly at the origin, hav-

ing all 3D line segments in its field of view. The 3D line segments

were projected onto the image plane. Coordinates of the 2D end-

points were then perturbed with independent and identically dis-

tributed Gaussian noise with standard deviation of σ pixels. 10 0 0

trials were carried out for each combination of m, σ parameters. 

Accuracy of pose estimation and robustness to image noise

of each method was evaluated by measuring the estimated and

true camera pose while varying m and σ similarly to Mirzaei and

Roumeliotis (2011) . The position error �T = || T ′ − T || is the dis-

tance from the estimated position T ′ to the true position T . The

orientation error �� was calculated as follows. The difference be-

tween the true and estimated rotation matrix ( R 

� R 

′ ) is converted

to axis-angle representation ( E , �) and the absolute value of the

difference angle | �| is considered as the orientation error. The

reprojection error �π is an integral of squared distance between

points on the image line segment and the projection of an infinite

3D line according to Taylor and Kriegman (1995) , averaged 

7 over

all individual lines. 

The results showing accuracy of the methods and their robust-

ness to image noise are depicted in Fig. 2 . Errors for each method

are plotted from the minimal number of lines to 10,0 0 0 lines (or

less, if the method runs too long or if it has impractical memory

requirements). In the following text, the method names are often
7 Please note that Taylor and Kriegman (1995) defined the reprojection error as a 

sum over all individual lines, which makes it dependent on the number of lines. 

t  

s  

D  

r  
ugmented with their plot marks to ease referencing into result

harts. 

Our results show high sensitivity to noise of Ansar . Even

nder slight image noise σ = 1 px, the measured accuracy is

oor. The other non-LPnL methods ( Mirzaei , RPnL , ASPnL )

utperform the LPnL methods for low number of lines (3 – 10), as

xpected. ASPnL is the most accurate among them. An exception is

he LPnL method LPnL_Bar_ENull , the accuracy of which is close

o ASPnL . It even outperforms ASPnL in the case of medium and

trong image noise ( σ = 5–20 px), see Fig. 2 . 

For high number of lines (100 – 10,0 0 0), the LPnL meth-

ds outperform the non-LPnL ones. LPnL_Bar_ENull and DLT-

ombined-Lines are significantly most accurate in both orien-

ation and position estimation, and they also yield the lowest re-

rojection error. With increasing number of lines, accuracy of the

PnL methods further increases, while the errors of the non-LPnL

ethods ( Mirzaei , RPnL , ASPnL ) do not fall below a cer-

ain level. This gets more obvious with increasing levels of noise,

ee Fig. 2 . Each of the LPnL methods also eventually reaches its

imit, as it can be seen in the bottom right area of Fig. 2 . However,

he accuracy limits of non-LPnL methods lag behind the limits of

PnL methods. 

DLT-Lines and LPnL_Bar_LS behave nearly identically, the

atter being slightly more accurate. The only difference between

he two is the latter’s use of barycentric coordinates, to which the

light improvement in results can probably be attributed. However,

LT-Lines proves to be more accurate in position estimation and

eprojection under strong image noise. DLT-Plücker-Lines per-
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Table 1 

Image sequences used in the experiments with real data. 

Sequence Source Abbreviation #images #lines 

Timberframe House MPI a TFH 72 828 

Building Blocks MPI a BB 66 870 

Street MPI a STR 20 1841 

Model House VGG b MH 10 30 

Corridor VGG b COR 11 69 

Merton College I VGG b MC1 3 295 

Merton College II VGG b MC2 3 302 

Merton College III VGG b MC3 3 177 

University Library VGG b ULB 3 253 

Wadham College VGG b WDC 5 380 

a MPI dataset http://resources.mpi-inf.mpg.de/LineReconstruction/ 
b VGG dataset http://www.robots.ox.ac.uk/ ∼vgg/data/data-mview.html 
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orms comparably with the two aforementioned methods for 25 or

ore lines. 

The best accuracy on many lines is achieved by the

PnL_Bar_ENull and DLT-Combined-Lines methods, being the
est in all criteria. While they are comparable in orientation esti-

ation, DLT-Combined-Lines outperforms LPnL_Bar_ENull in esti-

ation of camera position and in reprojection for many lines. The

igher accuracy of DLT-Combined-Lines is most apparent under

trong image noise, see the right part of Fig. 2 . 

The distributions of errors of the individual methods over all

0 0 0 trials are provided in the supplementary material. 

.1.1. Quasi-singular line configurations 

Methods for pose estimation are known to be prone to sin-

ular or quasi-singular configurations of 3D primitives. Therefore,

he robustness of the methods to quasi-singular line configurations

as also evaluated. The setup from Section 6.1 was used with the

umber of lines fixed to m = 200 , and standard deviation of image

oise fixed to σ = 2 px. 

.1.2. Limited number of line directions 

Lines were generated in three different scenarios: 2 random

irections, 3 random directions, and 3 orthogonal directions. The

ethods of Ansar and Mirzaei do not work in either case. RPnL

nd ASPnL do work, but are susceptible to failure. DLT-Plücker-

ines and DLT-Combined-Lines do not work in the case of 2 di-

ections, work unreliably in the case of 3 directions, and begin to

ork flawlessly if the 3 directions are mutually orthogonal. DLT-

ines, LPnL_Bar_LS and LPnL_Bar_ENull work well in all cases. 

.1.3. Near-planar line distribution 

Lines were generated inside a cube spanning 10 3 m, but the

ube was progressively flattened until it became a plane. Nearly

ll methods start to degrade their accuracy when flatness of the

cube” reaches a ratio of 1:10 and perform noticeably worse at

he ratio of 1:100. Mirzaei , all three DLT-based methods and

PnL_Bar_LS mostly stop working. RPnL and ASPnL do work, but

ften fail. The only fully working method is LPnL_Bar_ENull . 

.1.4. Near-concurrent line distribution 

Lines were generated randomly, but an increasing number

f lines were forced to intersect at a random point inside the

ube until all lines were concurrent. Mirzaei, RPnL, ASPnL and

PnL_Bar_LS degrade their accuracy progressively, although ASPnL

nd LPnL_Bar_LS are reasonably accurate even in the fully concur-

ent case. The DLT-based methods work without any degradation

s long as 3 or more lines are non-concurrent. LPnL_Bar_ENull

lso works without degradation in the fully concurrent case. 

To sum up, behavior of the proposed method, DLT-Combined-

ines , is inherited from its two predecessor methods DLT-Lines

nd DLT-Plücker-Lines . Their accuracy is degraded: 

• If the lines tend to be planar (flatness ≈ 1:10 or more). 
• If there are fewer than 3 non-concurrent lines. 
• If the lines are organized into 3 or less directions (DLT-Lines

works in this case, but DLT-Plücker-Lines and DLT-Combined-

Lines work only if the 3 directions are orthogonal). 

For the sake of brevity, charts depicting errors in the quasi-

ingular cases are part of the supplementary material. 

.2. Real data 

Ten datasets were utilized, which contain images with detected

D line segments, reconstructed 3D line segments, and camera

rojection matrices. Example images from the datasets are shown

n Fig. 3 , and their characteristics are summarized in Table 1 . The
imberframe House dataset contains rendered images, while the

est contain real images captured by a physical camera. The Build-

ng Blocks and Model House datasets capture small-scale objects

n a table, the Corridor dataset captures an indoor corridor, and

he other six datasets capture exteriors of various buildings. The

uilding Blocks dataset is the most challenging because many line

egments lie on the common plane of a chessboard. 

Each PnL method was run on the data, and the errors in cam-

ra orientation, camera position and reprojection of lines were av-

raged over all images in each sequence. The mean errors achieved

y all methods on individual datasets are given in Table 2 and vi-

ualized in Fig. 4 . 

On sequences with small number of lines (MH 30, COR 69),

he results of non-LPnL and LPnL methods are comparable. Con-

ersely, on sequences with high number of lines (177–1841), the

on-LPnL methods are usually less accurate than the LPnL meth-

ds. Ansar was run only on the MH sequence containing 30

ines, because other sequences caused it to exceed available mem-

ry. It achieves poor performance. Mirzaei yields usually the

east accurate estimate on sequences with high number of lines.

n other sequences, it performs comparably to the other methods.

 slightly better accuracy is achieved by RPnL , but it also has

rouble on sequences with high number of lines (TFH, BB, STR). The

elated method ASPnL mostly performs better than RPnL with

n exception of sequences with many lines – BB and STR. Never-

heless, ASPnL yields the most accurate pose estimates on MH and

OR. This agrees with the findings of Xu et al. (2016) , who state

hat ASPnL is suitable rather for small line sets. 

The most accurate results on each sequence are predominantly

chieved by the LPnL methods: Most of the top-3 results are

chieved by LPnL_Bar_ENull , followed by the proposed method

LT-Combined-Lines , see Table 2 . LPnL_Bar_LS and DLT-

ines also achieve top-3 accuracy, although it happens less fre-

uently. DLT-Plücker-Lines is the least accurate LPnL method on

eal data, being the only LPnL method which performs slightly be-

ow expectations based on synthetic data. Results of other methods

re consistent with the results achieved on synthetic lines. 

.3. Effect of prenormalization 

The prenormalization procedure of the proposed method was

escribed in Section 5.2 . It has five stages, which are labeled (i) –

v). To show how the individual stages contribute to the overall ac-

uracy of the method, it was executed on both synthetic lines and

eal data, while the prenormalization stages were activated one

fter another. The experimental setup for synthetic lines was the

ame as in Section 6.1 . 

http://resources.mpi-inf.mpg.de/LineReconstruction/
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
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Fig. 3. Example images from used datasets. The images are overlaid with reprojections of 3D line segments using the camera pose estimated by the proposed method 

DLT-Combined-Lines. 

Fig. 4. Experiments with real data. Mean orientation errors ( ��, top ), position errors ( �T, middle ) and reprojection errors ( �π , bottom ) on individual image sequences. All 

vertical axes are logarithmic. 
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The results are shown in Table 3 , which contains the median er-

rors in estimated camera pose for each group of active stages. Each

row also shows a relative improvement in accuracy with respect to

the previous row. 

The measurements show that stages (i) and (ii), i. e. multipli-

cation of each 3D point/line by a constant and translation of the
ata to be centered around the origin, have the biggest impact on

ccuracy of the method. Stage (v), i. e. scaling of some parts of the

easurement matrix, proves to be important mainly in the case

f real data. Stages (iii) and (iv), i. e. the second translation and

nisotropic scaling, have a minor positive impact on accuracy. 
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Table 2 

Experiments with real data. Mean orientation error ��[ °], position error �T [ ] and reprojection error �π for each method 

and image sequence. The top-3 results for each sequence are typeset in bold and color-coded ( , and 

results). 

Table 3 

Effect of prenormalization stages on the accuracy of the proposed method. 

Synthetic lines Real data 

Prenormalization Median of abs. error Improvement Median of abs. error Improvement 

stages �� [ °] �T [m] �π [ ] �� �T �π �� [ °] �T [ ] �π [ ] �� �T �π

none 0 .92 4 4 4 .48 1 .11e–2 – – – 1 .25 0 .21 2 .40e–6 – – –

(i) 0 .93 373 .35 1 .50e–2 –1% 16% –35% 0 .38 0 .14 1 .42e–7 69% 34% 94% 

(i), (ii) 0 .01 0 .48 3 .17e–6 98% 100% 100% 0 .22 0 .09 6 .25e–8 42% 33% 56% 

(i) – (iii) 0 .01 0 .48 3 .15e–6 0% 0% 0% 0 .22 0 .09 6 .26e–8 0% 0% 0% 

(i) – (iv) 0 .01 0 .48 3 .08e–6 0% 0% 2% 0 .23 0 .09 6 .33e–8 –1% 0% –1% 

(i) – (v) 0 .01 0 .64 1 .47e–6 2% –34% 52% 0 .21 0 .07 6 .93e–8 8% 21% –9% 
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Table 4 

Runtimes in milliseconds for varying number of 

lines, averaged over 10 0 0 trials. 

# lines 10 100 10 0 0 

Ansar 4 .1 – –

Mirzaei 77 .9 84 .2 155 .2 

RPnL 8 .8 41 .3 879 .5 

ASPnL 8 .7 29 .5 630 .2 

LPnL_Bar_LS 1 .1 1 .2 2 .3 

LPnL_Bar_ENull 5 .2 5 .3 6 .7 

DLT-Lines 1 .0 1 .2 2 .7 

DLT-Plücker-Lines 3 .0 3 .6 8 .2 

DLT-Combined-Lines 3 .7 4 .6 12 .1 
.4. Speed 

Efficiency of each method was evaluated by measuring runtime

n a desktop PC with a quad core Intel i5 3.33 GHz CPU and 10 GB

f RAM. The experimental setup was the same as in Section 6.1 ,

arying the number of lines. 

As it can be seen in Fig. 5 and Table 4 , the only method

ith O ( m 

2 ) computational complexity in the number of lines m is

nsar . The space complexity of the implementation used is ap-

arently also quadratic. We were unable to execute it for as few as

00 lines due to lack of computer memory. All other tested meth-

ds have O ( m ) computational complexity. The runtimes however
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Fig. 5. Runtimes as a function of the number of lines, averaged over 10 0 0 trials. 

Logarithmic vertical axis. 
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differ substantially. It is apparent that the LPnL methods are sig-

nificantly faster than the non-LPnL methods. 

RPnL and ASPnL , being related methods, are nearly

equally fast. RPnL is slightly faster for m < 10 lines, while ASPnL

is faster for greater numbers of lines. Runtimes of both methods

rise steeply with increasing number of lines, reaching 630.2 ms on

10 0 0 lines for ASPnL . Runtime of Mirzaei , on the other hand,

grows very slowly, spending 155.2 ms on 10 0 0 lines. However,

Mirzaei is slower than RPnL for m < 200 lines. This is due to

computation of a 120 × 120 Macaulay matrix in Mirzaei’s method

which has an effect of a constant time penalty. 

The LPnL methods are one to two orders of magnitude faster

than the non-LPnL methods. The fastest two are DLT-Lines and

LPnL_Bar_LS , spending about 1 ms on 10 lines, and not more

than 3 ms on 10 0 0 lines, see Table 4 . Slightly slower are DLT-

Plücker-Lines , DLT-Combined-Lines and LPnL_Bar_ENull ,

spending about 3 – 5 ms on 10 lines, and about 6–12 ms on 10 0 0

lines. The slowdown factor for DLT-Plücker-Lines is the prenor-

malization of 3D lines. This is also the case of DLT-Combined-

Lines , where a measurement matrix of double size must be ad-

ditionally decomposed compared to the competing methods, see

Eq. (21) . The computationally demanding part of LPnL_Bar_ENull

is the effective null space solver carrying out Gauss-Newton opti-

mization. 

6.5. Robustness to outliers 

As a practical requirement, robustness to outlying correspon-

dences was also tested. The experimental setup was the same as in

Section 6.1 , using m = 500 lines having endpoints perturbed with

slight image noise ( σ = 2 pixels). The image lines simulating out-

lying correspondences were perturbed with an additional extreme

noise with σ = 100 pixels. The fraction of outliers varied from 0%

to 80%. 

Ansar, Mirzaei , and RPnL methods were plugged into a MLESAC

framework (Torr and Zisserman, 20 0 0, a generalization of RANSAC

which maximizes the likelihood rather than just the number of in-

liers) . Since Ansar cannot handle the final pose computation from

potentially hundreds of inlying line correspondences, it is com-

puted by RPnL . The probability that only inliers will be selected

in some iteration was set to 99%, and the number of iterations

was limited to 10,0 0 0. The inlying correspondences were identi-

fied based on the line reprojection error. No heuristic for early hy-

pothesis rejection was utilized, as it can also be incorporated into

AOR, e. g. by weighting the line correspondences. DLT-Lines, DLT-

Plücker-Lines , and DLT-Combined-Lines methods were equipped

with AOR, which was set up as described in Section 4.4 . 

The setup presented by Xu et al. (2016) was also tested:

LPnL_Bar_LS and LPnL_Bar_ENull methods with AOR, and a P3L
olver and ASPnL plugged into a RANSAC framework, generating

amera pose hypotheses from 3 and 4 lines, respectively. The au-

hors have set the required number of inlying correspondences to

0% of all correspondences, and limit the number of iterations to

0. When this is exceeded, the required number of inliers is de-

reased by a factor of 0.5, and another 80 iterations are allowed.

he inlying correspondences are identified based on thresholding

f an algebraic error – the residuals ε i of the least squares solu-

ion in Eq. (9) , where the measurement matrix ˙ M is used, defined

y Eq. (11) . 

The tested methods are summarized in the following list (the

umber at the end of MLESAC/RANSAC denotes the number of

ines used to generate hypotheses). 

1. Ansar + MLESAC4 + RPnL , Ansar plugged into a MLESAC loop,

the final solution computed by RPnL. Results shown in black .

2. Mirzaei + MLESAC3 , results shown in red . 

3. RPnL + MLESAC4 , results shown in blue . 

4. P3L + RANSAC3 , the setup by Xu et al. (2016) , results shown in

sky blue . 

5. ASPnL + RANSAC4 , the setup by Xu et al. (2016) , results shown

in light blue . 

6. LPnL_Bar_LS + AOR , the setup by Xu et al. (2016) , results

shown in teal . 

7. LPnL_Bar_ENull + AOR , the setup by Xu et al. (2016) , results

shown in blue-green . 

8. DLT-Lines + AOR , results shown in purple . 

9. DLT-Plücker-Lines + AOR , results shown in green . 

0. DLT-Combined-Lines + AOR , the proposed method with AOR,

results shown in orange . 

The RANSAC-based approaches can theoretically handle any

ercentage of outliers. This is confirmed by Mirzaei + MLESAC3 

nd RPnL + MLESAC4 , as their accuracy does not change with

espect to the fraction of outliers. What does change however, is

he number of iterations (and thus also the runtime). Even then,

he limit of 10,0 0 0 iterations was almost never reached. A differ-

nt situation occurred when testing Ansar + MLESAC3 + RPnL ,

here the iteration limit was sometimes reached even at 20% of

utliers. This suggests that Ansar is a poor hypothesis generator,

nd the MLESAC framework needs to iterate more times to get a

alid hypothesis. 

P3L + RANSAC3 and ASPnL + RANSAC4 have much lower

untimes, which is caused mainly by the setup limiting the number

f iterations to a few hundreds. The setup has, on the other hand,

 negative effect on the robustness of the method: the break-down

oint is only 60–70%, as it is apparent in Fig. 6 a, b. This issue was

ot observed by Xu et al. (2016) , because they tested the methods

nly up to 60% of outliers. 

LPnL methods with AOR have constant runtimes regardless of

he fraction of outliers. The fastest one is DLT-Lines + AOR 

unning in 10 ms on average. The proposed method DLT-

ombined-Lines + AOR runs in 31 ms on average, and

PnL_Bar_ENull + AOR is the slowest one with 57 ms, see

ig. 6 d. The robustness of the LPnL methods differs significantly.

LT-Plücker-Lines + AOR breaks-down at about 40%, but it oc-

asionally generates wrong solutions from 30% up, We call this

 “soft” break-down point. LPnL_Bar_ENull + AOR behaves

imilarly, but it yields smaller pose errors. DLT-Lines + AOR ,
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Fig. 6. Experiments with outliers. Mean camera orientation errors ( ��, a ), position errors ( �T, b ), reprojection errors ( �π , c ) and runtimes ( d ) depending on the 

percentage of outliers. Averaged over 10 0 0 trials. 
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PnL_Bar_LS + AOR , and the proposed method DLT-Combined-

ines + AOR , on the other hand, have a “hard” break-down point

t 70%, 65%, and 60%, respectively. This means they do not yield

rong solutions until they reach the break-down point. 

The RANSAC-based approach is irreplaceable in cases with high

ercentage of outliers. Aside from this, for lower fractions of out-

iers, the LPnL + AOR alternatives are more accurate and 4 – 31 ×
aster than the RANSAC-based approaches, depending on the cho-

en LPnL method. 

The distributions of errors of the tested methods over all 10 0 0

rials are provided in the supplementary material. 

. Conclusions 

A novel algebraic method DLT-Combined-Lines is proposed to

stimate camera pose from line correspondences. The method is

ased on linear formulation of the Perspective-n-Line problem, and

t uses Direct Linear Transformation to recover the combined pro-

ection matrix. The matrix is a combination of projection matrices

sed by the DLT-Lines and DLT-Plücker-Lines methods, that work

ith 3D points and 3D lines, respectively. The proposed method

orks with both 3D points and lines, leading to the reduction of

he minimum of required lines to 5, and it can be easily extended

o use 2D points as well. The combined projection matrix contains

ultiple estimates of camera rotation and translation, which can

e recovered after enforcing constraints of the matrix. Multiplic-

ty of the estimates leads to better accuracy compared to the other

LT methods. 

For small line sets, the proposed method is not as accurate as

he non-LPnL methods, which is a common attribute of all meth-

ds using linear formulation. For larger line sets, the method is
omparable to the state-of-the-art method LPnL_Bar_ENull in ac-

uracy of orientation estimation. Yet, it is more accurate in estima-

ion of camera position and it yields smaller reprojection error un-

er strong image noise. On real world data, the proposed method

chieves top-3 results. It also keeps the common advantage of LPnL

ethods: very high computational efficiency. To deal with outliers,

he proposed method is equipped with the Algebraic Outlier Re-

ection scheme, being able to handle up to 65% of outliers in a

raction of time required by the RANSAC-based approaches. 

It is clear that none of the existing methods is universally best.

e thus suggest to use ASPnL for small line sets ( m ≤ 10). For

igger line sets ( m > 10), we suggest to use a LPnL method: either

PnL_Bar_ENull (in cases with small noise or quasi-singular line

onfigurations) or DLT-Combined-Lines (in cases with many lines

nd/or strong noise). 

Future work involves examination of the combined projection

atrix in order to adaptively combine the multiple camera rotation

nd translation estimates contained in the matrix. Inspired by the

ork of Xu et al. , the proposed method could also be combined

ith the effective null space solver. This might further increase the

ccuracy of the method. 

Matlab code of the proposed method and the supplementary

aterial are publicly available at http://www.fit.vutbr.cz/ ∼ipribyl/

LT- based- PnL/ . 
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Appendix A. Derivation of a measurement matrix M from 

3D/2D correspondences 

Correspondences between 3D entities and their 2D counterparts

are defined by equations which, in turn, generate rows of a mea-

surement matrix M . The following derivations are made for a sin-

gle 3D/2D correspondence. More correspondences lead simply to

stacking the rows of M . 

A1. Line-line correspondence 

We start from Eq. (7) defining the projection of a 3D line L by

a line projection matrix P̄ onto the image line l 

l ≈ P̄ L . (A.1)

We swap its sides and pre-multiply them by [ l ] ×

[ l ] ×P̄ L ≈ [ l ] ×l . (A.2)

The right-hand side is apparently a vector of zeros 

[ l ] ×P̄ L = 0 . (A.3)

Using Lemma 4.3.1 of Horn and Johnson (1994) , we get (
L � � [ l ] ×

)
· vec ( ̄P ) = 0 . (A.4)

The left-hand side can be divided into the measurement ma-

trix M = L � � [ l ] × and the vector of unknowns p̄ = vec ( ̄P ) , finally

yielding the homogeneous system 

M ̄p = 0 . (A.5)

A2. Point-point correspondence 

The derivation is the same as in the case of line-line correspon-

dences, but starting from Eq. (3) defining the projection of a 3D

point X by a point projection matrix ˙ P onto the image point x . 

x ≈ ˙ P X (A.6)

[ x ] × ˙ P X ≈ [ x ] ×x (A.7)

[ x ] × ˙ P X = 0 (A.8)(
X 

� 
� [ x ] ×

)
· vec ( ̇ P ) = 0 (A.9)

M ̇

 p = 0 (A.10)

A3. Point-line correspondence 

We start from Eq. (10) relating the projection of a 3D point X

and an image line l 

l � ˙ P X = 0 . (A.11)

Since Eq. (A.11) already has the right-hand side equal to 0, we can

directly apply Lemma 4.3.1 of Horn and Johnson (1994) , and see

how the measurement matrix M is generated: (
X 

� 
� l � 

)
· vec ( ̇ P ) = 0 , (A.12)

M ̇

 p = 0 . (A.13)
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