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Abstract. Hashing is an important function in many applications such
as hash tables, caches and Bloom filters. In past, genetic programming
was applied to evolve application-specific as well as general-purpose hash
functions, where the main design target was the quality of hashing. As
hash functions are frequently called in various time-critical applications,
it is important to optimize their implementation with respect to the exe-
cution time. In this paper, linear genetic programming is combined with
NSGA-II algorithm in order to obtain general-purpose, ultra-fast and
high-quality hash functions. Evolved hash functions show highly com-
petitive quality of hashing, but significantly reduced execution time in
comparison with the state of the art hash functions available in literature.

1 Introduction

Hash functions are highly nonlinear functions assigning a relatively short numer-
ical representation to an arbitrary data record of a predefined structure and size.
Hash functions are frequently used in many applications of computer science and
engineering such as hash tables, caches and Bloom filters. Hash functions are eval-
uated with respect to two fundamental properties: (i) quality of hashing – which
can be defined in different ways (see Sect. 2.1) and (ii) complexity, which is highly
correlated with the execution time. Some additional properties are crucial for
the so-called cryptographic hash functions, but this paper only deals with non-
cryptographic hash functions. As the design of a good hash function is tricky and
requires a lot of insight and experience, evolutionary algorithms (genetic program-
ming (GP) in particular) have been employed to accomplish this task.

The existing body of literature dealing with evolutionary design of hash func-
tions is relatively rich; however, except paper [1] none of them is explicitly ori-
ented to the optimization of the time of execution (latency or delay in other
words) which becomes crucial in contemporary high end applications such as
high speed network monitoring, big data indexing and finding duplicate records.

In the literature, the latency is usually considered as a constraint and the
optimization goal is to maximize the quality of hashing. The hash function design
problem is then formulated as a single objective design problem.
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In some cases, hash functions are evolved as application-specific functions
and evaluated in a very specific environment [1–4], providing thus much bet-
ter solutions in particular applications than the so called general-purpose hash
functions. For example, a multi-objective evolutionary design approach focusing
not only on the quality of hashing, but also on the execution time has been
proposed for network flow hashing [1]. In this case, evolved hash functions had a
fixed-size input (96 bits) and consisted of a linear sequence of instructions which
is executed just once to obtain the hash.

The goal of this paper is to present and evaluate a multi-objective evolu-
tionary approach for the design of high-quality and ultra-fast general-purpose
hash functions. The main difference with respect to [1] is that the resulting hash
functions are capable of accepting multiple k-bit inputs (in order to be general-
purpose ones) and the evaluation is performed on various principally different
test sets such as randomly generated data, network flow records, passwords and
Facebook and Twitter data. The proposed approach is based on linear genetic
programming (LGP) combined with a multi-objective NSGA-II algorithm, where
the objectives are the number of collisions (after embedding the hash function
to a hash table) and the execution time. As measuring the real execution time
on a particular machine is time consuming (during the evolution), the execu-
tion time is estimated according to the number and type of instructions used by
a particular candidate hash function. In order to estimate this value for mod-
ern processors, a specialized procedure is developed which considers not only
the complexity of instructions, but also their scheduling on SIMD architectures.
Evolved hash functions are compared in terms of quality of hashing and execu-
tion time with 8 human-designed and 2 evolved general-purpose hash functions
available in the literature.

The rest of the paper is organized as follows. Section 2 briefly introduces the
principles of hash functions and previous work on evolving hash functions. The
proposed multi-objective method is introduced in Sect. 3. Section 4 describes our
results from the experiments performed in order to evaluate the proposed method
and compare resulting hash functions with existing solutions. Conclusions are
given in Sect. 5.

2 Related Work

In this section, the principles of hash functions are presented and evolutionary
approaches developed to the design of hash functions are briefly surveyed.

2.1 Hash Functions

A hash function is a mathematical function h that maps an input binary string
(of length k) to a binary string of fixed length (l), h : 2k → 2l, where k >> l.
The output value is called hash value or simply hash [5]. The definition of hash
function implies the existence of collisions, i.e. h(x) = h(y), where x, y are two
input messages such that x �= y. One of desirable properties of hash functions



Multi-objective Evolution of Ultra-Fast General-Purpose Hash Functions 189

is that similar input vectors produce completely different outputs. This is called
the avalanche effect.

The most important application of hash functions is the hash table [6]. Based
on the key (the input to the hash function) a particular row (index) of the table
is activated and data are read/stored from/to a memory slot with that index. In
order to handle collisions (different data mapped to the same index), a separate
chaining method, cuckoo hashing, coalesced hashing and other techniques have
been developed. In the case of the separate chaining method, a list of records
having the same hash is operated for each index of the table. A newly entered
data record is then stored to the first empty item of the list connected to the
particular index. If there is at most one occupied record at index i then the time
complexity of lookup is O(1); if n records exist then the complexity is O(n) for
the i-th index.

The quality of non-cryptographic hash functions is given in terms of the col-
lision resistance (good hash functions generate a minimum number of collisions),
avalanche effect, distribution of outputs, execution time and table load factor
(for a given memory size). The hash function is typically called several times in
order to obtain desired address because the memory addressing system can be
designed as hierarchical, for example, in the cuckoo hashing scheme [7].

2.2 Hash Function Design

Non-cryptographic hash functions are mostly used in hash tables [6]. Other
important applications are Bloom filters [8], geometric hashing [9], coherency
sensitive hashing [10,11] etc. A common approach to the automatic hash function
design is to apply a general construction procedure such as the Merkle-Damg̊ard
construction. The literature provides us with various implementations of general-
purpose human-created hash functions including DJBHash [12], DEKHash [5],
FVN (Fowler-Noll-Vo) [13], One At Time, Lookup3 [14], MurmurHash2, Mur-
murHash3 [15] and CityHash [16].

Evolutionary approaches have been primarily focused on the non-cryptograp-
hic hash function design and evolved with genetic algorithms [17], tree GP [18],
linear GP [1], grammar evolution [19] and Cartesian GP [20]. They can further
be divided according to the purpose, i.e. either application-specific hash func-
tions [1,21] or general-purpose hash functions [18,22]. The difference lies in the
input data size and the evaluation approach. The fitness function is usually based
on measuring the avalanche effect [23,24] or the number of collisions [1,22].

3 Multi-objective Linear GP in Hash Function Design

As target hash functions are optimized with respect to the execution time, it
is natural to represent them at the level of machine instructions. Hence, linear
genetic programming in which candidate programs are represented as sequences
of instructions for a register machine [25–27] is employed to evolve hash functions.
In order to ensure a multi-objective design, LGP is connected with NSGA-II as
introduced in [1]. This section deals with proposed representation and evaluation
of candidate hash functions.
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3.1 Candidate Program Processing

General-purpose hash functions are typically constructed using instructions such
as logical functions (e.g. XOR, AND, OR), addition, multiplication and rotation.
These instructions then define the instruction set for LGP. The initial popula-
tion is generated randomly using these instructions. As the size of the input is
arbitrary in the case of general-purpose hashing, it is necessary to partition the
input stream into several blocks and process them sequentially. Since the loop
responsible for reading the input is always present, it makes no sense to evolve
it. We will evolve just the body of the loop. Figure 1 shows that a candidate
hash function is called in each iteration to read a new block and combine it with
intermediate results obtained from processing the previous blocks. Particularly
in this case, 32 bits are copied from the input stream to register r[1] in each
iteration. The resulting hash is produced to register r[0].

Fig. 1. Framework for candidate program evaluation. In this case, a 32 bit data input
is read in each iteration.

3.2 Quality of Hashing

Inspired in [1], the quality of hashing is measured in terms of the number of
collisions. Let Ki inputs (keys) be mapped into i-th memory slot by a candidate
hash function h. Then the fitness f(h) is defined as the weighted number of
collisions:

f(h) =
s∑

i=1

gi, where (1)

gi =
{

0 if Ki ≤ 1∑Ki

j=2 j
2 if Ki ≥ 2

(2)

where s is the number of memory slots. This function clearly penalizes can-
didate hash functions showing many collisions at one slot. The objective is to
minimize f(h).
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Algorithm 1. Execution time estimation
Input: Candidate program p
Output: The number of used instructions

1 c ← RotateCodeOutputRegisterLast(p);
2 used-instructions = 0;
3 previous-used-instructions = 0;
4 used-registers ← Insert(output-register);
5 while previous-used-instructions == used-instructions do
6 previous-used-instructions = used-instructions;
7 used-instructions = 0;
8 cp ← c;
9 while 〈 i ← getLastInstruction(cp) 〉 do

10 if DestinationRegister(i) ∈ used-registers then
11 used-registers ← Insert(source-registers(i));
12 Increment(used-instructions);

13 remove instruction i from cp;

14 return RotateBack(used-instructions);

3.3 Execution Time Estimation

As hash functions are very frequently called in some applications, it is important
to optimize them with respect to the execution time. In order to capture features
of modern processors supporting the Single Instruction Multiple Data (SIMD)
paradigm, a method performing the execution time estimate takes into account
not only the number of instructions and their type, but also their eventual par-
allel processing (which in principle reduces the execution time). In LGP, not
all instructions of a candidate program contribute to the result. There are two
types of redundant instructions. Firstly, the genotype may contain instructions
whose output is not consumed by any other instruction (the so-called structural
redundancy). Secondly, there could be instructions used in the phenotype, but
not contributing to the resulting value. For example, if the code contains r[5] =
r[1] + r[0]; r[5] = r[2] + r[0], the first instruction can be removed. The algorithm
developed to estimate the execution time removes unused instructions in the first
step and, in the second step, it identifies those instructions that can be executed
in parallel.

Because we evolve the body of a loop and the evolved code is executed
multiple times, we cannot use the same approach as [1] (i.e. analyzing the algo-
rithm from the last to the first instruction and removing unused instructions)
to estimate the execution time. The reason is that unused instructions of one
iteration can be important in the next iteration. Hence, Algorithm 1, removing
the unused instructions, has more steps. Firstly, the instructions of the candi-
date program have to be rotated to a state in which the output register of the
hash function is at the last position of the program. The program is analyzed in
rounds, until all used instructions are not marked. Then unused instructions can
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be removed. Finally, the resulting code has to be rotated back, because the next
step performs instruction scheduling and the order of instructions is important
(see Algorithm 1). Example is presented in Fig. 2.

We exploit the instruction level parallelism [28] enabling to process multiple
data with a single instruction. Modern CPUs can typically process 256 bits at
once which means that eight 64-bit operations can be executed in one instruction
instead of executing 4 instructions sequentially. As introduced in [1], instruction

Fig. 2. Removal of unused instructions consists of rotating the candidate program to a
configuration in which output register r0 is at position of the last instruction, identifying
used instructions (in bold), removing unused instructions and rotating the code back.
The optimized code is then scheduled for parallel execution. The final program consists
of 5 steps in which 1, 1, 2, 2 and 2 instructions are executed in parallel.
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Fig. 3. Evolved hash functions that were selected from Pareto front in Fig. 4.

scheduling lies in determining when the instructions can be executed based on
analyzing dependences among them. The ASAP (As Soon As Possible) and
ALAP (As Late As Possible) routines are employed for this purpose. Figure 2
shows that in our example, the optimized 8-instruction program is finally exe-
cuted in 5 steps in which 1, 1, 2, 2 and 2 instructions are executed in parallel.

3.4 Search Algorithm

A common version of LGP (with tournament selection, single-point crossover
and mutation) is combined with NSGA-II [29]. According to [1], the maximum

Table 1. LGP parameters.

Parameter Value

Population size 100

Crossover probability 90 %

Mutation probability 15 %

Program length 12

Registers count/type 8/64 b – int

Constants {0x6a09e667, 0xbb67ae85, 0x3c6ef372,
0xa54ff53a, 0x510e527f, 0x9b05688c,
0x1f83d9ab, 0x5be0cd19, 0x428a2f98,
0x71374491}

Instruction set
(weight)

{ADD (1), MUL (3), XOR (1), OR (1)}

Tournament size 4

Maximum number
of generations

100

Crossover type One-point
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program size is limited to 12 instructions. The function set contains those oper-
ations that are typical for the hash function design (XOR, AND, OR, addition,
multiplication and right rotation). As multiplication is more complex than the
remaining instructions, its execution time is counted with weight 3 in the pro-
grams. Common hash functions contain various “magic” constants. We extracted
those appearing in the initial phase of hash function SHA-2 [30] and included
them to the set of constants available in LGP. The setup for LGP is summarized
in Table 1. NSGA-II is employed to find the best trade-offs between the number
of collisions (according to Eq. 2) and estimated execution time for a training set
(see Sect. 4).

4 Experiments and Results

This section describes the data sets used for evaluation, experiments and their
analysis in terms of quality of hashing and execution time. Results will be com-
pared with hash functions from the literature.

4.1 Data Sets

In order to evaluate candidate hash functions on different types of problems, we
used (i) randomly generated data and (ii) real-world data coming from network
flows, user passwords, and Facebook and Twitter posts.

We randomly generated the training data set (using a random text generator)
in such a way that it contains 200,000 vectors with a random size ranging from 16
to 1024 characters. The best-evolved hash functions and the hash functions taken
from the literature were then compared using 9 different randomly generated test
data sets (Dataset1–9) whose parameters are summarized in Table 2.

In the case of real-world data, data sets Netset1–3 are formed from identifiers
of network flows (source and destination IP addresses, source and destination
ports and transport protocol). The size of each input vector is 96 bits (see details
in [1]). The Passwords data set contains 10 million user passwords. Every pass-
words consists of 5 to 16 characters. Finally, Facebook and Twitter data sets
contain 1 million posts from selected social network groups. These posts are in
English, German, Hungarian, Czech and Slovak languages.

4.2 Hash Functions Used for Comparison

Evolved hash functions will be compared with human-created hash function
DJBHash, DEKHash, One At Time, Lookup3, FVNHash, Murmur2, Mur-
mur3, CityHash and evolved hash functions available in the literature (GPHash
[23,24] and EFHash [22]). A 32-bit hash table is used for testing all func-
tions. A direct comparison with [1] is possible only for the specific data sets
used in [1]. Application-specific hash functions (XORhash, NSGAHash1, NSGA-
Hash2, NSGAHash3, NSGAHash4, NSGAHash5, NSGAHash6, NSGAHash7 [1])
operate with a 96-bit input and produce a 16 bit hash value. Evolved hash func-
tions produce a 32 bit hash value. The XOR folding is used for reduction from
32 to 16 bits.
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Table 2. Data sets.

Name Number of vectors Length [bytes]

Dataset1 100,000 64

Dataset2 100,000 128

Dataset3 100,000 256

Dataset4 100,000 512

Dataset5 100,000 1024

Dataset6 100,000 2048

Dataset7 1,000,000 16 – 4096

Dataset8 1,000,000 16 – 4096

Netset1 20,000 12

Netset2 50,000 12

Netset3 100,000 12

Passwords 10,000,000 5 – 16

Facebook 1,000,000 3 – 280

Twitter 1,000,000 3 – 5000

Fig. 4. Pareto fronts obtained from 100 independent runs of LGP. The size of the circle
represents the number of identical solutions with the same properties. Selected hash
functions (blue squares) are given in Fig. 3. (Color figure online)
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4.3 Resulting Pareto Fronts

As we used the same parameters of LGP as [1], we do not report the impact of
LGP parameters on the equality of evolution. The main focus is on a comparison
of key parameters of evolved hash functions with existing hash functions.

We performed 100 independent runs of our multi-objective LGP and plotted
in Fig. 4 parameters of all solutions appearing on the (100) final Pareto fronts.
As many identical trade-offs were discovered in several (independent) runs, we
plotted them using a circle whose diameter depends on the number of such cases.
From all these designs, we selected two the most frequently occurring candidates
(blue squares) and analyzed their properties in greater detail. EvoHash1 (see the
C code in Fig. 3) produces zero collisions on the training data set, but includes
relative many instructions. EvoHash2 (see the C code in Fig. 3) shows the best
trade-off between the number of instructions and the number of collisions.

Since there are no clear outliers on Pareto fronts and the designs showing
desired trade-offs are represented by larger circles (i.e. there are many good solu-
tions), we can conclude that the proposed algorithm produces stable solutions.
It can be seen in Fig. 4 that there are almost no solutions showing 101 − 104

collisions. Our explanation for this behavior is that there are only a few discrete
points for the second objective (the number of instructions) and these points are
already covered by good solutions.

4.4 The Number of Collisions

The hash functions from the literature introduced in Sect. 4.2 were implemented
in C programming language and compiled with the same compiler setting as
evolved hash functions. All tests were then carried out with these implementa-
tions to ensure fair comparisons. The evaluation of all these hash functions was
performed on an Intel Xeon E5-2620v3 processor running at 2.4 GHz.

Table 3. The number of collisions for randomly generated data sets.

Hash function The number of collisions

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 DataSet6 DataSet7 DataSet8

DJBHash 0 3 0 1 1 3 132 116

DEKHash 60004 90000 90000 90000 90000 90000 122 118

FVNHash 0 4 1 1 1 0 115 122

One At Time 1 2 2 2 1 1 108 115

lookup3 1 0 0 2 1 2 122 111

Murmur2 1 1 1 0 3 3 125 126

Murmur3 2 0 2 1 1 3 114 111

CityHash 3 1 1 1 1 0 125 111

GPHash 1 1 1 1 0 0 115 102

EFHash 38137 53488 63353 64983 65119 65209 799933 799825

EvoHash1 2 2 2 1 1 1 133 116

EvoHash2 1 1 0 3 3 1 119 108
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Table 3 gives the number of collisions for all randomly generated datasets for
a 32 bit hash table. The best values are typed in bold; the second best values in
bold-italic. It can be seen that hash functions evolved by LGP produce a very
similar number of collisions as other hash functions from the literature; except
DEKHash and EFHash where many collisions are visible. From the point of view
of the number of collisions, evolved hash functions are as good as the other hash
functions. The same phenomenon can be observed for real-world data sets (see
Tables 4 and 5).

4.5 The Execution Time and Performance

Tables 6, 7, 8 show the average execution time obtained from 50 independent
runs of all hash functions on all data sets. The task is to compute a hash value
for each vector of a given dataset. The evolved hash functions exhibit the shortest
execution time in almost all cases. Similar parameters show Google’s CityHash.

Table 4. The number of collisions for network data from [1].

Hash function The number of collisions

NetSet1 NetSet2 NetSet3

DJBHash 2835 15113 48925

DEKHash 2926 15247 49017

FVNHash 2756 14957 48780

One At Time 2821 14988 48636

lookup3 2742 15009 48737

Murmur2 2800 15050 48749

Murmur3 2744 14911 48763

CityHash 2807 14990 48647

XORHash 2864 15011 48575

GPHash 2777 15052 48750

EFHash 5317 25266 63175

NSGAHash1 2923 15677 49336

NSGAHash2 2746 15170 48835

NSGAHash3 2689 15575 49292

NSGAHash4 2692 15010 48715

NSGAHash5 2759 14975 48749

NSGAHash6 2650 14839 48680

NSGAHash7 2639 14975 48650

EvoHash1 2849 15185 48652

EvoHash2 2821 14982 48695
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Table 5. The number of collisions for real-world data sets.

Hash function The number of collisions

Passwords Facebook Twitter

DJBHash 11663 247 137

DEKHash 14114 357 153

FVNHash 11845 115 115

One At Time 11590 105 138

lookup3 11567 119 107

Murmur2 11637 112 123

Murmur3 11589 103 89

CityHash 11530 122 122

GPHash 11634 117 113

EFHash 9983806 873270 824153

EvoHash1 11871 23 98

EvoHash2 11469 10 1

Evolved EvoHash2 is slightly faster (4%) than CityHash, but significantly faster
(2x) than very popular Murmur hash 3.

Table 7 shows that the application-specific hash functions have a shorter exe-
cution time for the network data sets. But evolved hash functions are faster than
the best conventional hash functions (CityHash, lookup3).

Finally, we compared all hash functions in terms of throughput that can be
obtained by SMHasher [31]. This is a test suite designed to test performance
properties of non-cryptographic hash functions. In the Bulk speed test (with

Table 6. The average execution time for randomly generated data sets.

Hash function Execution time [ms]

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 DataSet6 DataSet7 DataSet8

DJBHash 19.56 32.914 45.311 72.31 126.081 231.675 2556.226 2554.123

DEKHash 12.907 19.352 28.141 46.975 81.419 156.839 1875.878 1872.019

FVNHash 17.354 31.694 48.371 83.761 155.702 294.259 3223.727 3220.844

One At Time 20.208 36.895 57.667 100.993 189.24 360.009 3918.302 3916.603

lookup3 12.867 22.685 28.403 42.581 72.585 125.851 1437.492 1433.961

Murmur2 12.06 20.332 25.718 36.065 60.202 102.426 1195.029 1190.402

Murmur3 12.863 21.622 27.796 40.367 68.557 119.167 1368.135 1363.745

CityHash 10.906 18.591 20.344 24.807 36.806 54.535 683.363 679.325

GPHash 25.497 47.418 80.294 147.286 283.533 550.774 5949.786 5948.746

EFHash 24.394 41.66 69.332 127.822 246.387 479.26 5237.982 5237.599

EvoHash1 10.383 17.084 19.056 23.897 35.508 55.838 685.604 681.327

EvoHash2 10.385 17.411 19.022 23.825 53.132 37.334 659.185 656.647
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Table 7. The average execution time for network data from [1].

Hash function Time [ms]

NetSet1 NetSet2 NetSet3

DJBHash 1.861 5.134 12.724

DEKHash 1.221 4.373 10.407

FVNHash 1.301 4.721 9.633

One At Time 1.769 5.290 12.352

lookup3 0.925 2.891 7.435

Murmur2 1.034 3.095 7.925

Murmur3 1.193 3.215 8.727

CityHash 0.960 2.625 7.407

XORHash 0.838 2.318 6.652

GPHash 1.865 4.671 12.558

EFHash 2.472 13.527 49.495

NSGAHash1 0.529 2.804 8.507

NSGAHash2 0.527 2.072 6.564

NSGAHash3 0.514 2.779 8.492

NSGAHash4 0.530 2.073 6.219

NSGAHash5 0.534 2.081 6.288

NSGAHash6 0.527 2.083 6.249

NSGAHash7 0.547 2.175 6.449

EvoHash1 0.802 2.569 7.455

EvoHash2 0.830 2.825 7.835

262144 byte keys), evolved hash functions EvoHash1 and EvoHash2 outper-
formed the remaining hash functions (Table 9).

Table 8. The average execution time for real-world data sets.

Hash function Time [ms]

Passwords Facebook Twitter

DJBHash 5438.594 17.331 16.726

DEKHash 5067.882 13.240 13.119

FVNHash 5499.328 14.174 12.767

One At Time 6072.904 15.410 13.955

lookup3 4543.399 12.009 10.919

Murmur2 4464.339 11.723 10.774

Murmur3 4573.453 11.955 10.966

CityHash 4385.625 11.149 10.355

GPHash 6389.323 17.966 16.167

EFHash 5101.523 14.304 13.746

EvoHash1 4268.402 10.895 9.996

EvoHash2 4277.341 10.832 9.954
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Table 9. Speed test according to SMHasher [31].

Bulk speed test – 262144-byte keys – MiB/sec

Hash function Alignment

0 1 2 3 4 5 6 7

DJBHash 1268.27 1271.40 1271.40 1271.40 1271.40 1271.40 1271.40 1271.40

DEKHash 1906.95 1907.01 1907.02 1907.01 1907.00 1907.06 1907.06 1907.05

FVNHash 953.63 953.63 953.63 953.63 953.63 953.63 953.63 953.63

OneAtTime 634.20 634.12 634.12 634.15 634.14 634.12 634.15 634.14

lookup3 2750.08 2735.18 2735.27 2735.29 2749.80 2735.26 2735.20 2735.14

Murmur2 3813.36 3780.15 3780.15 3780.15 3813.46 3780.25 3780.25 3780.25

Murmur3 7476.99 7332.31 7335.21 7332.47 7333.44 7334.75 7332.51 7334.79

CityHash 15450.42 14386.41 14370.53 14389.85 14390.17 14372.77 14385.49 14400.47

GPHash 475.67 475.68 475.68 475.69 475.69 475.68 475.68 475.69

EFHash 543.60 543.59 543.59 543.58 543.60 543.58 543.59 543.59

EvoHash1 15121.84 14661.90 14662.12 14663.13 14662.58 14662.96 14662.41 14662.68

EvoHash2 17578.29 16726.21 16726.44 16725.27 16730.33 16726.50 16727.08 16728.04

5 Conclusions

In this paper, we proposed and evaluated a multi-objective evolutionary design
approach in which LGP is combined with NSGA-II algorithm in order to
obtain general-purpose, ultra-fast and high-quality hash functions. This pro-
posal addressed current needs of IT industry which seeks for high quality, but
ultra fast hash functions. The fitness function was based on (i) the number of col-
lisions with penalization for candidate hash functions producing many collisions
and (ii) the execution time.

The best evolved hash functions were compared with 10 hash functions from
literature. In terms of quality, evolved hash functions produce almost the same
number of collisions as other good hash functions. In terms of the execution
time and performance, a hash function improving parameters of a high quality
conventional solution (CityHash) was discovered.

Our future work will be devoted to improving the design framework (in terms
of supporting other objectives and accelerating the design process) and detailed
testing of evolved hash functions in other real-world applications.
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