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Abstract
In this paper, we present an analysis of a DNN-based autoen-
coder for speech enhancement, dereverberation and denoising.
The target application is a robust speaker recognition system.
We started with augmenting the Fisher database with artifi-
cially noised and reverberated data and we trained the autoen-
coder to map noisy and reverberated speech to its clean version.
We use the autoencoder as a preprocessing step for a state-
of-the-art text-independent speaker recognition system. We
compare results achieved with pure autoencoder enhancement,
multi-condition PLDA training and their simultaneous use. We
present a detailed analysis with various conditions of NIST SRE
2010, PRISM and artificially corrupted NIST SRE 2010 tele-
phone condition. We conclude that the proposed preprocessing
significantly outperforms the baseline and that this technique
can be used to build a robust speaker recognition system for
reverberated and noisy data.
Index Terms: speaker recognition, signal enhancement, au-
toencoder

1. Introduction
In last years, various techniques for speech and signal process-
ing have been introduced to cope with the distortions caused by
noise and reverberation. In the field of speaker recognition, one
way to tackle this problem is to use multi-condition training of
PLDA, where we introduce noise variability and reverberation
variability into the within-class variability of speakers. Also,
several techniques were introduced in the field of microphone
array to solve this issue by active noise canceling, beamform-
ing and filtering [1]. For single microphone systems, front-ends
utilize signal pre-processing methods such as Wiener filtering,
adaptive voice activity detection (VAD), gain control, etc. [2].
Next, various designs of robust features [3] are used in combi-
nation with normalization techniques such as cepstral mean and
variance normalization or short-time gaussianization [4].

The last years have seen, the rise of interest in NN signal
pre-processing. An example of classical approach to remove a
room impulse response is proposed in [5], where the filter is
estimated by an NN. NNs have also been used for speech sep-
aration in [6]. NN-based autoencoder for speech enhancement
was proposed in [7] with optimization in [8] and finally, rever-
berant speech recognition with signal enhancement by a deep
autoencoder was tested in the Chime Challenge and presented
in [9].

In this paper, we investigate the use of a DNN autoen-
coder as an audio pre-processing front-end for speaker recogni-
tion. The autoencoder is trained to learn a mapping from noisy
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and reverberated speech to clean speech. The frame-by-frame
aligned examples for DNN training are artificially created by
adding noise and reverberation to the Fisher speech corpus. The
analysis in this paper extends our previous work presented in
[10] and focuses on different autoencoders in more variable and
harder conditions. These conditions are simulated by adding
the noise and reverberation into the NITST SRE2010 telephone
condition and extend the selection of test sets that we used in
[10].

We confirm our conclusions from [10] and we offer more
experimental evidence and thorough analysis to demonstrate
that the proposed method increases the performance of the text
independent speaker recognition system. As it was already
shown that performing multi-condition training with added
noisy and reverberated data helps significantly in speaker recog-
nition [11, 12], we will also discuss the influence of quantity,
quality, and type of autoencoder training data on performance
of the analyzed SRE system. In the end, we will show that we
can significantly profit from combination of both techniques.

2. Autoencoder training and dataset design
Fisher English database parts 1 and 2 were used for training
the autoencoder. They contain over 20,000 telephone conversa-
tional sides or approximately 1800 hours of audio.

Our autoencoder consists of three hidden layers with 1500
neurons in each layer. The input of the autoencoder was cen-
tral frame of a log-magnitude spectrum with context of +/- 15
frames (in total 3999-dimensional input). The output is an 129-
dimensional enhanced central frame. We used Mean Square
Error (MSE) as objective function during training.

2.1. Adding noise

We prepared a noise dataset that consists of three sources of
different types of noise:

• 272 samples (4 minutes long) taken from the Freesound
library 1 (real fan, HVAC, street, city, shop, crowd, li-
brary, office and workshop).

• 7 samples (4 minutes long) of artificially generated
noises: various spectral modifications of white noise +
50 and 100 Hz hum.

• 25 samples (4 minutes long) of babbling noises by
merging speech from 100 random speakers from Fisher
database using speech activity detector.

Noises were divided into three disjoint groups for training (223
files), development (40 files) and test (41 files).

2.2. Reverberation

We prepared two sets with room impulse responses (RIRs). The
first set consists of real room impulse responses from several

1http://www.freesound.org



databases: AIR [13], C4DM [14, 15], MARDY [16], OPE-
NAIR [17], RVB 2014 [18], RWCP [19]. Together, they form
a set with all types of rooms (small rooms, big rooms, lecture
room, restrooms, halls, stairs etc.). All room models have more
than one impulse response per room (different RIR was used for
source of the signal and source of the noise to simulate different
locations of their sources). Rooms were split into two disjoint
sets, with 396 rooms for training, 40 rooms for test.

The second set consists of artificially generated room im-
pulse responses using “Room Impulse Response Generator”
tool from E. Habets [20]. The tool can model the size of room
(3 dimensions), reflectivity of each wall, type of microphone,
position of source and microphone, orientation of microphone
towards the audio source, and number of bounces (reflections)
of the signal. We generated a pair of RIRs for each room model
(one used for source of the sound, one for source of the noise).
Again we generated two disjoint sets, with 1594 RIRs for train-
ing and 250 RIRs for test.

2.3. Composition of the training set

To mix the reverberation, noise and signal at given SNR, we
followed the procedure showed in figure 1. The pipeline begins
with two branches, when speech and noise are reverberated sep-
arately. Different RIRs from the same room are used for signal
and noise, to simulate different positions of sources.

The next step is A-weighting. A-weighting is applied to
simulate the perception of the human ear to added noise [21].
With this filtering, the listener would be able to better perceive
the SNR, because most of the noise energy is coming from fre-
quencies, that the human ear is sensitive to.

In the following step, we set a ratio of noise and signal en-
ergies to obtain the required SNR. Energies of the signal and
noise are computed from frames given by original signal’s voice
activity detection (VAD). It means the computed SNR is really
present in speech frames which are important for our recogni-
tion (frames without voice activity are removed during process-
ing).

After the combination, where signal and noise are summed
together at desired SNR, we filter the resulting signal with tele-
phone channel. To compensate for the fact that our noise sam-
ples are not coming from the telephone channel, while the orig-
inal clean data (Fisher, NIST tel-tel) are in fact telephone. The
final output is a reverberated and noisy signal with required
SNR, which simulates a recording passing through the tele-
phone channel (as was the original signal) in various acoustic
environments. In case we want to add only noise or reverbera-
tion, the appropriate part of the algorithm is used.

3. Speaker recognition system
Our systems are based on i-vectors [22, 23]. To train i-vector
extractors, we always use 2048-component diagonal-covariance
Universal Background Model (GMM-UBM) and we set the
dimensionality of i-vectors to 600. We apply LDA to re-
duce the dimensionality to 200. Such processed i-vectors are
then transformed by global mean normalization and length-
normalization [22, 24].

Speaker verification score is produced by comparing two
i-vectors corresponding to the segments in the verification trial
by means of PLDA [23].

In our experiments, we used cepstral features, extracted us-
ing a 25 ms Hamming window. We used 24 Mel-filter banks and
we limited the bandwidth to the 120–3800Hz range. 19 MFCCs
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Figure 1: The process of data preparation (corruption) for au-
toencoder training or new SRE condition design.

together with zero-th coefficient were calculated every 10 ms.
This 20-dimensional feature vector was subjected to short time
mean- and variance-normalization using a 3 s sliding window.
Delta and double delta coefficients were then calculated using a
five-frame window giving a 60-dimensional feature vector.

After feature extraction, voice activity detection (VAD) was
performed by the BUT Czech phoneme recognizer [25], drop-
ping all frames that are labeled as silence or noise. The recog-
nizer was trained on the Czech CTS data, but we have added
noise with varying SNR to 30% of the database.

3.1. Datasets

We used the PRISM [26] training dataset definition without
added noise or reverb to train UBM and i-vector transformation.
Five variants of gender independent PLDA were trained: one
only on the clean training data, the rest included also artificially
added different cocktail of noises and reverb. Artificially added
noise and reverb segments totaled approximately twenty-four
thousand segments or 30% of total number of clean segments
for PLDA training. The PRISM set comprises Fisher 1 and 2,
Switchboard phase 2 and 3 and Switchboard cellphone phases 1
and 2, along with a set of Mixer speakers. This includes the 66
held out speakers from SRE10 (see Section III-B5 of [26]), and
965, 980, 485 and 310 speakers from SRE08, SRE06, SRE05
and SRE04, respectively. A total of 13,916 speakers are avail-
able in Fisher data and 1,991 in Switchboard data.

We evaluated our systems on the female portions of the fol-
lowing conditions in NIST SRE 2010 [27] and PRISM [26]:

• tel-tel: SRE 2010 extended telephone condition involv-
ing normal vocal effort conversational telephone speech
in enrollment and test (known as condition 5).

• int-int: SRE 2010 extended interview condition involv-
ing interview speech from different microphones in en-
rollment and test (known as condition 2).

• int-mic: SRE 2010 extended interview-microphone con-
dition involving interview enrollment speech and nor-
mal vocal effort conversational telephone test speech
recorded over a room microphone channel (known as
condition 4).



• prism,noi: Clean and artificially noised waveforms from
both interview and telephone conversations recorded
over lavalier microphones. Noise was added at different
SNR levels and recordings tested against each other.

• prism,rev: Clean and artificially reverberated wave-
forms from both interview and telephone conversations
recorded over lavalier microphones. Reverberation was
added with different RTs and recordings tested against
each other.

• prism,chn: English telephone speech with normal vo-
cal effort recorded over different microphones from both
SRE2008 and 2010 tested against each other.

Additionally, we created new artificially corrupted evalua-
tion sets from the NIST 2010 tel-tel condition. The process was
the same as described in section 2.3 while using the tests por-
tion of our noise and reverberation sets. We created seven new
conditions:

• rev-tel-tel: SRE 2010 tel-tel condition corrupted by real
room impulse responses (reverberation).

• noi-∗-tel-tel: SRE 2010 tel-tel condition corrupted by
noise. We used three ranges of noise: 0-7dB, 7-14dB,
14-21dB (range is writen on position of ∗, e.g. noi-0-7-
tel-tel).

• rev-noi-∗-tel-tel: SRE 2010 tel-tel condition corrupted
by noise and real rooms impulse responses. Again, we
used three ranges of noise: 0-7dB, 7-14dB, 14-21dB.

The difference between these new conditions and the con-
ditions based on the PRISM set is in more realistic reverber-
ation. Condition prism,rev is created from clean microphone
data corrupted with artificially generated RIRs. The new con-
ditions focus on adding a real reverberation to the telephone
data. Similarly, the prism,noi condition is created from micro-
phone data by adding the noise at three levels of SNR (8dB,
15dB, 20dB), the new conditions use telephone data and ran-
domly chosen SNR levels from the given intervals. Addition-
ally, the selected telephone data tend to be more difficult than
the microphone data used in the PRISM conditions.

The recognition performance is evaluated in terms of the
equal error rate (EER).

4. Experiments and discussion
We provide a set of results for answering two questions: (i) How
does the speaker recognition performance depend on the type of
the enhancement (denoising, dereverberation, both) and amount
or type (real, artificial) of the autoencoder training data? (ii)
How does using the autoencoder compare to using the multi-
condition data for SRE system training? In the end we also
combine the autoencoder with the multi-condition training and
find the best performing combination.

We trained five different autoencoders for signal enhance-
ment. Two autoencoders were trained only for dereverbera-
tion. The first was trained with artificially generated reverbera-
tion and the second used real reverberation. The third autoen-
coder was trained only for denoising. The last two autoencoders
were trained simultaneously for denoising and dereverberation.
Again, one of them used artificially generated RIRs and the sec-
ond one used the real ones.

Similarly, we created five different multi-condition training
sets for PLDA. The approach is the same as in the autoencoder
training. We used exactly the same noises and reverberation for

segment corruption as in autoencoder training, allowing us to
compare the performance when using the autoencoder or multi-
condition training.

Our results are listed in table 1. Results are separated into
two main blocks: PLDA trained on the clean data and PLDA
trained on the multi-condition data. Each block is additionally
separated to highlight whether the autoencoder enhancement is
used or not.

In the first block, the baseline corresponds to the system
where the PLDA was trained only on the clean data without
any enhancement. The next five columns represent results when
using different autoencoders: N - autoencoder trained only on
the noised data, AR - autoencoder trained on the data corrupted
with artificial generated RIRs, RR- autoencoder trained on the
data corrupted with the real RIRs. N+(A/R)R - autoencoder
simultaneously trained on the data with both types of distortion
(noise and reverberation).

In the second block, we list the results for multi-condition
training. We trained five different PLDAs, every time using a
different mix of corrupted data added to the training list. PLDA
or autoencoder on its own cannot fully profit from the added
corrupted data. Autoencoder is able to partially remove the
noise and reverberation from the data, while PLDA can learn
the effect these data have for within- and across- speaker vari-
ability. Combining both techniques naturally brings the most
improvement as we can see from the last block in table 1. In
these experiments, we were again modifying the data for the
multi-condition PLDA training, but all of this data was previ-
ously processed by a single autoencoder. We decided to use the
autoencoder simultaneously trained on the noisy and reverber-
ated data (using real RIRs). This autoencoder was chosen based
on its good and consistent performance in various conditions
and we believe that it could represent an universal preprocess-
ing step as there is only a negligible drop in performance when
using it on clean data (see for example the performance on tel-
tel condition of baseline system versus the N+RR column in the
first block in table 1).

Now, let us focus on comparing the baseline system and the
system with enhanced data (PLDA is trained only on clean and
enhanced data). In these experiments, we study which autoen-
coder training dataset is the best for given condition. If we look
at these results globally, we can see that for most of the reverber-
ation conditions (prism,rev, int-int, int-mic and rev-tel-tel, with
exception of prism,chn), the autoencoder trained on the real re-
verberation provides the best results. Similar situation occurs
for noisy conditions (prism,noi, noise-∗-tel-tel) and noisy end
reverberated conditions (rev-noise-∗-tel-tel). These results con-
firm our intuition, that it is best to use the autoencoder trained
on the matching distortion to remove its effect from the data.
We can also observe that to remove the reverberation, it is best
to train on data reverberated by real RIRs instead of those arti-
ficially generated. This holds even for the condition containing
only artificial reverberation (prism,rev). In general, when look-
ing at the first block in table 1, all of the autoencoders trained
using reverberation with real RIRs (columns RR, N+RR) are
better than those trained using artificial RIRs (AR, N+AR). We
can also see, that the difference in performance between the RR-
autoencoder and the N+RR autoencoder is rather small more in
favor of the latter, both in reverberation and noisy conditions.
This indicates that using the N+RR autoencoder is a good uni-
versal choice and justifies its selection for the experiments when
combining the audio enhancing with multi-condition training.

When focusing on the multi-condition training (first part of
the second block in table 1) and taking the global view, we can



Table 1: Results (EER [%]) obtained in four scenarios. The first two blocks correspond to the system trained only with clean data
(PLDA trained on clean data). In the left block, scores of baseline system are displayed. In the right block, the score of the clean
system with enhancement data is displayed. Results of five autoencoders trained on: N - noise, (A/R)R- artificial/real reverberation,
or both (+) are presented in each column. The last two blocks correspond to systems trained in multi-condition fashion (with noised
and reverberated data in PLDA). Results in each column correspond to different PLDA multi-condition training set: N - noise, (A/R)R-
artificial/real reverberation, or both (+). The very last block present results of the combination of both techniques. For combination,
we select autoencoder trained on noised and reverberated data with real reverberation (N+RR).

PLDA trained on clean data PLDA trained on multi-condition data

baseline Autoencoder training PLDA extension data Autoencoder (N+RR) + PLDA extension data

Condition N AR N+AR RR N+RR N AR N+AR RR N+RR N AR N+AR RR N+RR

tel-tel 2.062 2.075 2.093 2.074 1.999 2.063 2.458 2.071 2.728 2.035 2.796 2.480 2.070 2.677 2.143 2.752
prism,noi 2.950 2.122 2.497 2.256 2.470 2.190 2.265 3.080 2.518 2.926 2.456 1.969 2.243 2.037 2.236 2.059
prism,rev 2.071 1.748 1.621 1.608 1.511 1.559 2.220 1.537 1.620 1.613 1.632 1.583 1.419 1.385 1.422 1.419
int-int 1.756 1.792 1.693 1.766 1.634 1.790 1.860 1.677 1.760 1.669 1.714 1.806 1.697 1.714 1.705 1.761
int-mic 1.089 1.136 1.085 1.151 1.010 1.112 1.226 0.770 0.921 0.960 1.042 0.981 1.000 0.848 0.982 0.943
prism,chn 0.795 0.523 0.599 0.402 0.596 0.428 1.000 0.544 0.666 0.630 0.756 0.456 0.344 0.371 0.277 0.400
rev-tel-tel 19.373 14.760 11.182 13.450 9.149 9.365 17.835 9.461 10.151 5.246 6.598 8.287 6.137 5.847 4.066 4.761
noi-14-21-tel-tel 4.959 3.298 4.009 3.943 3.721 3.703 2.901 4.605 3.530 4.321 3.390 2.689 3.205 2.962 3.021 2.980
noi-7-14-tel-tel 8.291 5.117 6.808 5.710 6.660 5.749 3.941 8.026 4.920 7.540 4.715 3.528 5.084 3.719 4.595 3.517
noi-0-7-tel-tel 18.953 10.681 15.518 11.276 15.868 12.280 8.831 18.782 9.547 18.116 9.576 6.080 11.402 6.252 10.014 6.382
rev-noi-14-21-tel-tel 16.517 15.099 11.044 11.356 9.398 7.631 16.128 11.079 8.344 8.942 6.387 6.379 6.097 4.798 4.948 4.143
rev-noi-7-14-tel-tel 19.543 19.899 13.985 15.615 12.352 9.610 17.174 16.516 10.246 14.197 8.314 7.169 8.184 5.626 7.033 5.126
rev-noi-0-7-tel-tel 27.834 28.154 22.193 24.523 21.442 16.841 21.558 26.679 15.629 25.530 14.660 10.533 15.609 8.770 14.369 8.149

observe similar trends as in the pure enhancement task. If we
want to remove some type of distortion, it is best to add the
matching distortion type into the PLDA training. If we look
more closely, we can see the difference in reverberation con-
ditions based on the PRISM set, where (as opposed to the en-
hancement) the multi-condition system using artificially gener-
ated RIRs have better results. This can indicate that it is easy for
the PLDA to capture the channel variability caused by reverber-
ating with the artificial RIRs which results in better performance
in this matched-condition scenario. This hypothesis is further
strengthened when comparing the AR with RR on rev-tel-tel
condition when training on the matched-condition RR data al-
most halves the error rate.

If we analyze the difference in performance between the
pure signal enhancement and the multi-condition training, we
see that the multi-condition training has slightly better results,
especially in the hardest conditions rev-∗-tel-tel. In the clean
tel-tel condition, we can see that using autoencoder harms the
performance less than multi-condition training. Additionally in
some PRISM-based conditions (prism,rev, int-int, prism,chn),
the autoencoder is also better than multi-condition training.

Finally, we look at the combination of both techniques (the
very last block in table 1). Here, we are still having the same
training lists for multi-condition PLDA training, but addition-
ally, all data are enhanced by autoencoder trained on noised and
reverberated data with real RIRs. We can see that in most con-
ditions, we improve results with the pure multi-condition train-
ing. We suffer a significant degradation in clean tel-tel condi-
tion with respect to baseline for N+AR and N+RR training, but
especially in the case of the latter, this degradation is compen-
sated by excellent performance in other conditions, especially
the most difficult rev-noise-∗-tel-tel where we gain more than
70 % relative improvement over the baseline.

The combination of both techniques can also eliminate
the big difference between artificially generated reverberation
and real reverberation as can be seen by comparing results of
N+AG and N+RR systems. As we already saw for pure multi-
condition training, the best results are again achieved by using
the matched distortion for PLDA training, but the difference be-
tween the best possible results and multi-condition training with
N+RR autoencoder are small. This justifies our recommen-

dation to use the combination of multi-condition training with
N+RR data that were preprocessed by the N+RR autoencoder
as a universal and robust system, especially when expecting re-
verberated and/or noisy test data.

5. Conclusion
In this paper, we analyzed several aspects of DNN-autoencoder
enhancement for designing robust speaker recognition systems.
We studied the influence of different training sets on autoen-
coder performance in speaker recognition and we concluded
that in our case the use of smaller amount of quality real RIRs
provided better results than using much larger amount of artifi-
cial RIRs.

We also directly compared the PLDA multi-condition train-
ing with audio enhancing. Our results suggest that introducing
the corrupted data on the i-vector level int the PLDA training
provides slightly better results for noisy and reverberated con-
dition, but at the same time causing more harm on clean data
compared to the autoencoder.

Finally, we conclude that the combination of both tech-
niques can significantly improve system performance compared
to the baseline and even to systems using only one of the two
techniques. We obtained more than 70 % relative improve with
respect to baseline and approximately 40 % relative improve-
ment with respect to multi-condition PLDA training. Based on
our results and in the light of very good performance of MFCC-
based systems in the NIST SRE 2016, we can say that autoen-
coders are a viable option to consider when designing a system
that is robust against various levels of reverberation and noise.
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