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a b s t r a c t 

Detection, counting and characterization of bubbles, that is, transparent objects in a liquid, is important 

in many industrial applications. These applications include monitoring of pulp delignification and multi- 

phase dispersion processes common in the chemical, pharmaceutical, and food industries. Typically the 

aim is to measure the bubble size distribution. In this paper, we present a comprehensive comparison 

of bubble detection methods for challenging industrial image data. Moreover, we compare the detection- 

based methods to a direct bubble size distribution estimation method that does not require the detec- 

tion of individual bubbles. The experiments showed that the approach based on a convolutional neural 

network (CNN) outperforms the other methods in detection accuracy. However, the boosting-based ap- 

proaches were remarkably faster to compute. The power spectrum approach for direct bubble size distri- 

bution estimation produced accurate distributions and it is fast to compute, but it does not provide the 

spatial locations of the bubbles. Selecting the most suitable method depends on the specific application. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

This paper focuses on estimating the size distribution of bub-

bles, or more generally, transparent approximately spherical ob-

jects in a liquid. The research is driven originally by the pulpmak-

ing industry, in particular the development of the pulp delignifi-

cation process. Pulp delignification with oxygen is a very energy-

intensive operation. To optimize and control the process, it is es-

sential to be able to characterize the process, especially the sizes

of the oxygen bubbles. The recent progress in camera and illumina-

tion technologies has made it possible to capture images inside the

process machines. Mutikainen et al. [29] present an imaging setup

applied to the pulp mill environment. From the produced images

(see Fig. 1 ), the bubble size distribution could be determined by

manually marking the individual bubbles. However, manual anal-

ysis of the images is very time-consuming, which motivates the

development of automatic methods for estimating the bubble size

distribution. 

The automatic determination of the bubble size distribution can

be performed either by detecting and characterizing each bubble in

an image or by estimating the size distribution directly using, for
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xample, frequency information. Of these two approaches, the one

ased on detection is more common. The bubble detection prob-

em is not easy to solve because the bubbles are transparent and

he illumination conditions inside the process machines are chal-

enging, which causes the bubble appearance to vary. In the im-

ges, the bubbles appear as roughly circular objects which moti-

ates to solve the problem by detecting circles. 

Two common approaches are used to detect circular ob-

ects: geometry-based and appearance-based approaches. In the

eometry-based approach, a circular model parameterized by its

enter and radius is fitted to the image edge map. These methods

ypically utilize a voting technique, such as the Hough Transform

HT) [10] or its modifications [23] . To address the main weaknesses

f the HT, such as computational complexity and storage require-

ents, several revisions of the basic HT have been proposed (see

.g. [27] ). However, despite the progress the geometry-based ap-

roaches suffer from a large number of false positives and are sen-

itive to noise. Moreover, they often fail to detect small blob-like

ubbles that do not have a ridge edge expected by the model [35] .

The appearance-based approaches use typically a sliding win-

ow in combination with a classifier/regressor in order to detect

he objects of interest. This class of methods include boosting-

ased detectors [9,36] , HOG-based detectors [8,12] , or recently

merging convolutional networks [15] . These approaches require a
 under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Examples of pulp suspension images with different process variables: (a) 

10 0 0 rpm; (b) 1380 rpm. 
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Fig. 2. CCA: (a) The model; (b) The weight function for the edge distance from the 

center. 
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arge amount of annotated training data covering all possible con-

itions and appearances of target objects. Insufficient data makes

etector performance worse, causing lower detection rates and

igher false positive rates. 

Several bubble detection methods that focus on resolving the

verlaps between bubbles exist. For example, Karn et al. [21] pro-

osed a method that utilizes morphological operations and the wa-

ershed transform to detect individual bubbles and Zhong et al.

39] makes use of concave points. However, these methods are de-

eloped for high quality images where the bubbles are clearly dis-

inguishable from the background. Therefore, the methods are not

pplicable for noisy industrial images. 

The problem of cell segmentation shares common characteris-

ics with bubble detection. Methods developed for cell segmenta-

ion include intensity thresholding, morphological operations, re-

ion growing, feature detection, and deformable model fitting [26] .

here are, however, some important differences between the bub-

le detection problems and the cell segmentation problems: the

ells contain more complex shapes while typical bubbles are close

o perfect circles, cells have smaller variation in size assuming only

ertain cell type is considered, a small bubble can appear fully in-

ide larger bubble, and bubbles are more transparent. 

The cell detection is often solved as blob detection problem.

ernardis and Yu [4] proposed a method to detect blobs defined

s small round regions in an image. The detection is carried out by

olving a region segmentation problem where the blobs form one

egion and the areas between blobs form the other. Arteta et al.

1] further developed a similar blob detection approach by propos-

ng a more complex statistical model that uses detected blobs as

bject candidates. The blob detection approach, however, cannot

e applied to bubble detection as such since bubbles typically

ave distinguishable edges, but are otherwise transparent. There-

ore, bubble detection should be based on edge point, instead of

etection of uniform blobs. 

Direct methods for the bubble size distribution estimation also

xist (e.g., [19] ). They do not require individual bubbles to be de-

ected. Such methods usually rely on the assumption that the im-

ge does not contain other objects besides bubbles and the size

istribution is estimated by analyzing the frequency information.

he direct methods are often fast to compute and are not sensitive

o frequent overlaps between bubbles, but may become unreliable

f the conditions (e.g., lighting or the amount of bubbles) change

onsiderably compared to the method training phase. 

Optical granulometry is a process of computing a size distribu-

ion of grains from images. The classical approach obtains the size

istribution by applying a series of morphological opening opera-

ions [24] . It is, however, only applicable for binary images. More

ophisticated modifications of the original method have been pro-

osed since (see, e.g., [33] ) and have been applied to, for exam-
le, biometric image analysis [16] and grain size analysis of sed-

ments [14] . However, the granulometry based methods are not

ikely suitable for estimating the size distribution of the bubbles

ince the bubbles appear as overlapping rings rather than regions

ith approximately constant color. 

In this work, different promising methods to detect bubbles

nd to estimate the bubble size distribution are compared. The

et of methods is selected so that the different approaches to

olve the problem are covered including geometry-based methods,

ppearance-based methods with both hand-crafted and learned

eatures, as well as, a direct method for the size distribution es-

imation. Both specific methods developed particularly for bubbles

r circular objects as well as general purpose object detectors are

ncluded. The experiments were carried out using a novel and ex-

ensive data set consisting of challenging images from real indus-

rial environment. 

. Bubble detectors 

.1. Concentric Circular Arrangements 

Strokina et al. [35] proposed a method to detect bubbles formu-

ated as detection of Concentric Circular Arrangements (CCAs). CCA

 = (A , c, r, θ ) is a set of concentric circular arcs A with a center c

ocated within an annulus of radius r and width 2 θ (see Fig. 2 (a)).

n arc is a connected component A = (P, r a ) parameterized by a

ixel list P and a radius r a . The score of a CCA is comprised by the

ontribution of separate pixels located within the CCA area. The

ontribution of a pixel p ∈ A with an orientation αp to the support

f a CCA hypothesis with a center c is computed as 

f p = g(�α) · q (r a ) (1)

here �α = 

∣∣∣αp − arctan 

( | x c −x p | 
| y c −y p | 

)∣∣∣ describes if the orientation of

he pixel is consistent with the CCA model (see Fig. 2 (a)). The

eight function for the pixel orientation g(�α) = 1 / (1 + �α) puts

ess weight to the edges with inconsistent orientation. The func-

ion q ( r a ) weights the pixel input depending on its location within

he CCA area. The weight function q ( r ) for the edge distance from

 center used in this work is presented in Fig. 2 (b). Its shape re-

ects the fact that the inner structure of a bubble also votes for a

ypothesis. 

The CCA-based bubble detection [35] starts with the compu-

ation of the oriented edge map by filtering image with second

erivative zero-mean oriented Gaussian filters in eight directions

ollowed by non-maximum suppression [6] . After that, the CCA

ypotheses are generated by sampling from the edge map using

rocedure similar to RANSAC [13] . A CCA hypothesis is generated

rom the arc if it satisfies the following requirements: (i) it re-

eives sufficient support from the pixels located within the CCA
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area and (ii) the support comes from a sufficient number of direc-

tions. The center location and the radius of the hypothesis are opti-

mized by maximizing the support with the Neadler–Mead Simplex

method [30] . Finally, the non-maximum suppression is performed

on the CCA parameters to prevent multiple hypotheses for a single

bubble. 

2.2. Boosting-based detection 

Object detection based on Boosting (AdaBoost algorithm or

its modifications) is one of the most widely known and used

technique today. It has been successfully applied to detection of

faces [36] , pedestrians [9] , and other object categories including

bubbles in a preliminary study [34] . The main advantages of this

method are the simplicity of implementation and the speed of de-

tection of objects. Detectors based on AdaBoost were successfully

implemented on GPUs and programmable hardware [38] . During

the last decade, much attention has been given to different aspects

of the method in order to handle multiview detection, improve

computational performance and detection accuracy, specifically as

follows: Training algorithm – Discrete/Real AdaBoost [36] , Gentle-

Boost, VectorBoost [18] , etc; detector structure – cascade [36] , soft-

cascade [5,37] , constant soft-cascade [9] and various tree structures

[18] ; weak classifiers – Haar features, Local Binary Patters, Local

Rank Differences, decision trees; and to underlying image features

used for classification – grayscale image, HOG, decorelation filters,

etc. The particular choice depends on the task at hand. 

The classification model H is an additive sequence of weak clas-

sifiers h evaluated on input features x as 

H(x ) = 

T ∑ 

t=1 

h t (x ) (2)

where the training selects h by greedy optimization [36] . 

The detector works on the sliding window principle. On pyra-

midal image representation, each level is scanned with the detec-

tor, and each image sub-window is classified by the model H . Clas-

sification speed can be improved by making the rejection decision

after the evaluation of every h t based on the tentative sum of H

[9] . Background areas (which are easy to classify), are rejected by

the first few weak classifiers, and more time is spent on the areas

which are harder to classify. Finally, positive responses are clus-

tered by a non-maxima suppression method in order to obtain the

locations and sizes of detected objects. 

In this work, we consider Soft-cascade detectors operating on

grayscale images or more advanced aggregate feature channels

[9] (HOG + L channels specifically). As weak classifiers we use shal-

low decision trees, as they have proved to be efficient in many

tasks [3,25] , and Local Binary Patterns, as they outperform the

commonly used Haar features and were efficiently implemented on

hardware platforms [38] . Fig. 3 shows the overview of our detector

architecture. 

2.3. Convolutional neural networks 

Convolutional Neural Networks (CNNs) have been used to

achieve state-of-the-art performance in various image analysis ap-

plications, such as image recognition [17] and object detection [32] .

A typical CNN consists of convolutional layers that are formed by

neurons which look at small overlapping regions of the input im-

age/feature map, a pooling layer used for downsampling, and fully

connected layers for the final decision making. Unlike the tradi-

tional methods where the decision is made using preselected fea-

tures, CNNs learn the filters used for feature extraction. 

In order the solve the bubble detection problem, the CNNs can

be applied in a sliding window manner. For each window, the CNN
s applied to compute the probability whether the window con-

ains a bubble or not. This creates a probability map for bubble de-

ections (detection image). To detect bubbles with different sizes,

he detection image is computed in multiple scales. A real bub-

le creates a circular patch of high values, usually in few neigh-

oring scales. To detect these, the detection image is, first, thresh-

lded with a threshold t c to create binary images. Connected com-

onents that do not meet the following conditions are rejected: 1)

rea is larger than t a , 2) the proportion of the pixels in the convex

ull that are also in the region is larger than t s , and 3) the ratio

f minor and major axis is larger than t m 

. This means that only

oughly circular blobs with a size large enough are accepted. After

his the detection images in different scales are scaled to a com-

on scale, and a detection cube with detection images from all

cales is created. The centroids of the blobs in the detection cube

re then detected. The location of the centroid in the depth direc-

ion represents the scale (radius) of the detected bubble. Finally,

ubbles which are found only in one scale are rejected. The final

tep is not applied for the smallest scales (highest resolution) due

o the fact that a circular arrangement of small bubbles occasion-

lly looks like a large bubble, but they are usually detected only in

ne scale. 

It should be noted that much faster CNN-based object detection

ethods exist, such as Faster R-CNN [32] that uses computationally

fficient ways to create region proposals that are classified by us-

ng a CNN, and You Only Look Once (YOLO) [31] that uses a CNN to

redict bounding boxes by only processing the image once. How-

ver, the sliding window approach, while slow to compute, can be

een as a method to obtain the upper limit for the performance

f approaches based on region proposals. If the same CNN is used

or classification, R-CNN can exceed the performance of the slid-

ng window approach only if the method to generate the region

roposals does not miss any bubble that the sliding window ap-

roach found. YOLO is not suitable for large images with hundreds

f objects (e.g., bubbles) due to the limited number of predicted

ounding boxes and known problems on detecting objects with a

mall size [31] . 

. Bubble size distribution estimators 

Given the radii of the detected bubbles, computing the bubble

ize distribution is straightforward. However, it is possible to es-

imate the bubble size distribution directly from the image with-

ut detecting the bubbles. In [11,22] , a method was presented for

etermining the bubble size distribution using a stationary planar

oolean model and two-point set statistics. The method, however,

equires a binary image where the bubbles and background are

eparated, and it is, therefore, unsuitable for noisy industrial im-

ge data. 
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bubbles. 

1 http://vision.ucsd.edu/ ∼pdollar/toolbox/doc/ , version 3.40. 
.1. Power spectrum 

Ilonen et al. [19] proposed a method to estimate the bubble

ize distribution directly from the images. This approach makes the

etection of bubbles unnecessary and, therefore, the problems re-

ated to overlapping bubbles and computation time caused by large

mount of bubbles can be avoided. 

Fourier transform of two signals (here bubbles) is the same as

aking the Fourier transform for them separately and adding them

p. Therefore, the Fourier transform of an image consisting of bub-

les is the same as Fourier transforms of images of separate bub-

les. However, the power spectrum of two combined signals is not

he same as their separate power spectra combined because the

hase (location) difference can cause them to nullify each other. In

he case of a large set of bubbles located randomly, it is reason-

ble to argue that their phases overlap predictably on average so

hat the distribution can still be determined with a good accuracy

rom the power spectrum. 

The method consists of the following steps: 

1. Calculate the power spectrum of an image using L frequency

bands. 

2. Use principal component analysis (PCA) to reduce the data to

M dimensions. 

3. Use multivariate linear regression to learn the dependency be-

tween the power spectrum and bubble count or volume distri-

bution. 

The power spectrum is a vector of the portion of a signal power

alling into specified frequency bins. It is acquired by applying the

-D discrete Fourier transform to the signal (image) and computing

he energy belonging to L linearly spaced frequency bins, produc-

ng a vector P i for an image i . The frequency range is limited at the

ower end because the maximum size of the bubbles is known, and

herefore, the lowest possible frequencies caused by actual bubbles

s defined. 

To reduce the dimensionality, PCA is used. The principal compo-

ents are calculated from the matrix containing the power spectra

f N images, P i , i = [1 . . . N] . The M principal components can then

e used to reduce the dimensionality of the original power spec-

rum P i to p i which is a vector with M components. 

Multivariate linear regression [7] is used to find out the rela-

ionship between vector p i and the bubble count or volume distri-

ution D i in the image. The distributions used are histograms with

 bins, with K = 10 in the example and all the experiments. The

ultivariate linear regression is defined as 
 

 

D 1 , 1 . . . D 1 ,K 

. . . 
D N, 1 . . . D N,K 

⎞ 

⎠ = 

⎛ 

⎝ 

p 1 , 1 . . . p 1 ,M 

1 

. . . 1 

p N, 1 . . . p N,M 

1 

⎞ 

⎠ X + ε (3) 

here X is the M + 1 × K matrix to be estimated and ε is the noise

erm. X is solved as a linear least squares estimation problem. The

istribution D j for a new image j can be estimated by calculating

he power spectrum P j , using PCA to reduce its dimensionality and

etting p j and then 

 j = 

(
p j, 1 . . . p j,M 

1 

)
X . (4) 

. Experiments 

.1. Data 

Images were gathered from the oxygen delignification process

f a pulp fiber line that provides a difficult imaging environment

esulting challenging data for bubble detectors and size distribu-

ion estimation methods. The imaging setup developed for the

urpose has been described in [28] and [29] . The experiments
ere performed with varied mixer rotor speeds from 900 rpm to

380 rpm (see examples in Fig. 1 ). Increasing the rotor speed in-

reases the amount of bubbles and decreases their size. Therefore,

he images taken with a high rotor speed are more difficult to an-

lyze. All other process variables were kept constant during each

easurement session. 20 images were captured with 6 different

otor speeds. The size of the original images was 2588 × 1940, but

nly the central 1482 × 1482 pixel areas of the images were used.

he ground truth (bubble contours) was manually marked by an

xpert. Due to the large amount of bubbles in each image and low

mage quality, the ground truth is imperfect. However, it provides a

epresentative set of bubbles to train the detection methods and to

stimate the bubble size distribution. The images were divided into

eparate training and test sets so that the training set contained 72

mages and the test set 48 images. 

.2. Parameter tuning and method training 

.2.1. Circular Hough Transform 

As a baseline method we selected the phase coding based circu-

ar Hough transform (CHT) method by Atherton and Kerbyson [2] .

HT parameters were selected by using a grid search and minimiz-

ng the volume estimation error in the training set. 

.2.2. Concentric Circular Arrangements 

CCA parameters were selected by using a grid search and mini-

izing the volume estimation error in the training set. The follow-

ng values were selected: the number of CCA sectors N = 10 , the

umber of sectors where the support of the hypothesis is not zero

 s = 4 , the maximum radius of bubbles R max = 1 . 52 mm, the filter

esponse threshold T filt = 0 . 93 , the width of the annulus θ = 0 . 5 R,

he minimum length of an arc from which a hypothesis is gener-

ted L min = 15 , the parameter of the cost-function W = 0 . 6 R . 

.2.3. Boosting-based detectors 

We trained three models that differ in the training algorithms

sed and features they extract from the input image. 

The ACF model was trained for reference. We used Piotr’s Im-

ge and Video Toolbox 1 with default settings, except for the chan-

els and smoothing. We used HOG + L channels as no color infor-

ation is available in our data, and we oversmoothened images

ith a 5 pixel triangle kernel prior to shrinking and feature chan-

el computation in order to handle the noise in images. The model

ize was 52 × 52 pixels with the shrink factor of 2. We applied 3

ounds of bootstrapping with detectors of length 32, 128 and 512,

oading 10,0 0 0 hard negatives in each round. The final model con-

ained 2048 decision trees of depth 2. 

The WaldBoost + Trees model is similar to ACF . We used the

ame settings for the channels and model size. The differences are

wofold: 1) training algorithm – WaldBoost [37] – bootstraps hard

egative samples in each training round, and 2) splits in the deci-

ion trees are pixel differences instead of simple pixel values. 

The WaldBoost + LBP model is the simplest one. Here we used

ust the grayscale image, Local Binary Pattern features, and no

hrinking. The model size was 26 × 26 pixels. The LBP features

ere composed from 3 × 3 adjacent cells, each of size up to

 × 2 pixels. The feature is parametrized by its position in a sliding

indow and the size of its blocks. 

During detection, a pyramid with 8 levels per octave is cre-

ted, feature channels are calculated, and shrinking is applied. Each

yramid level is scanned with the trained model, and positive re-

ponses are clustered using a simple overlap-based non-maxima

uppression algorithm, producing final locations of the detected

http://vision.ucsd.edu/~pdollar/toolbox/doc/
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Fig. 4. Examples of bubble detection results with low rotor speed (10 0 0 rpm; top row) and high rotor speed (1380 rpm; bottom row) images. Original images are cropped for 

visualization purposes. The ground truth markings are in white, true positives in yellow, false negative in blue, and false positive in red: (a) CHT; (b) CCA; (c) WaldBoost + LBP; 

(d) WaldBoost + Trees; (e) ACF; (f) CNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Detection results over all test images. 

Method TPR PPV F-measure 

CHT 54.69% 18.80% 0.280 

CCA 17.81% 73.07% 0.286 

CNN 79.72% 84.75% 0.822 

ACF 56.69% 44.31% 0.497 

WaldBoost + LBP 56.49% 53.12% 0.548 

WaldBoost + Trees 58.96% 52.35% 0.563 

w  

o  

(  

d  

e  

T  

A  

t  

s  

u  

o  

b

4

 

i  

s  

k  

t  

i  

t  

o  

A  

m  

W  

T  

g  

p  

n  

w  

r  

t  
4.2.4. Convolutional neural networks 

To train the CNN, the Caffe framework [20] was used. The first

convolution layer had 40 outputs with the kernel size of 9 and

the second convolution layer had 100 outputs with size 5. Max-

pooling was used. Training was performed using image patches

of size 28 × 28. If the bubble radius was small enough, the patch

was taken directly from the image. For larger bubbles, a larger

patch was cropped and resized. From each ground truth bubble in

the training data, 10 positive examples were generated (two scales

with factors 1.25 and 1.5, shifts in 4 directions and one without a

shift). Negative examples (background) were created by selecting

20 random patches so that they were not too close to the actual

bubbles. To avoid learning that a bubble border is a bubble, addi-

tional 10 randomly selected patches from the border of each large

bubble (radius larger than 40 pixels) were included to the negative

examples. This way the training data contained 148,860 positive

and 317,732 negative examples. 

For the bubble detection, a 28 × 28 pixel window for the low-

est scale and a scaling factor of 
√ 

2 to create multiple scales were

used. The number of scales was 9. Moreover, the following param-

eter values were used: the threshold for detection images t c = 0 . 9 ,

the area threshold for detections t a = 20 , the proportion of the pix-

els in the convex hull that are also in the region t s = 0 . 8 , the ra-

tio of minor and major axis t m 

= 0 . 7 . The rule to reject bubbles

that were detected only on one scale was ignored in the 4 small-

est scales. 

4.2.5. Power spectrum 

The power spectrum was calculated from 19 linearly spaced fre-

quency bins, f = [0 . 05 , 0 . 5] , and dimensionality was reduced with

PCA to 5. 

4.3. Bubble detection 

Examples of bubble detection results are shown in Fig. 4 . It

was noted that the methods found several apparent bubbles that

were not by the expert. In order to reliably estimate the true posi-

tive and false positive detections, all the unmarked detections were

given to the expert for validation who made a binary decision

whether the detection was a correct detection or background. The

new improved ground truth was used only for the evaluation and

not for method training. To compare the methods, three perfor-

mance measures, True Positive Rate (TPR) and Positive Predictive

Value (PPV), and F-measure (the harmonic mean of TPR and PPV)
ere used. A detection was considered as a true positive (TP) if the

verlap (intersect divided by union) between the detected bubble

circle) and the ground truth bubble was higher than 0.5. Multiple

etections were not allowed, i.e. only the detection with the great-

st overlap is considered as TP, others are treated as false positives.

he results with the improved ground truth are shown in Table 1 .

s it can be seen, the CNN outperformed the other methods by de-

ecting more correct bubbles and producing less false detections. It

hould be noted that the numbers of false negatives can be slightly

nderestimated assuming neither the expert nor any of the meth-

ds detected certain bubbles. Therefore, the true positive rates can

e slightly overestimated. 

.4. Bubble size distribution estimation 

The results on bubble size distribution estimation are shown

n Figs. 5 –7 . CHT produces a huge amount of false positives with

mall bubble sizes. Therefore, CHT is left out from the figures to

eep the presentation clear. Chi-squared distances between the es-

imated distributions and the ground truth distributions are shown

n Table 2 . Both the distances between the combined distribu-

ions over all rotor speeds (Combined) and the mean distances

ver distributions for different rotor speeds (Mean) are listed.

mong the bubble detection methods, the CNN produced the

ost accurate bubble size distribution. WaldBoost + LBP, ACF, and

aldBoost + Trees suffered from a large amount of false positives.

his, together with the small numbers of bubbles in the larger size

roups causes noise to the size distribution estimation witch ap-

ears as a zigzag pattern in the histograms. Moreover, a limited

umber of detection scales (window sizes) might cause the sliding

indow based methods to struggle with certain bubble sizes. ACF

esulted a count distribution with a low chi-squared distance to

he ground truth although it overestimates the number of bubbles.
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Fig. 5. Combined size distribution estimates for all rotor speeds: (a) Bubble count; 

(b) Count normalized by volume. 

Table 2 

Chi-squared distances of the estimated size distributions from the 

ground truth. 

Combined Mean 

Method Count Volume Count Volume 

CHT 0.0805 0.0309 0.0818 0.0468 

CCA 0.0706 0.0228 0.0581 0.0311 

CNN 0.0085 0.0052 0.0103 0.0086 

ACF 0.0022 0.0638 0.0093 0.0785 

WaldBoost + LBP 0.0171 0.0523 0.0215 0.0664 

WaldBoost + Trees 0.0153 0.0223 0.0247 0.0302 

Power Spectrum 0.0060 0.0017 0.0136 0.0149 
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Fig. 6. Size distribution (bubble count) estimates for different rotor speeds. 
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Fig. 7. Size distribution (count normalized by volume) estimates for different rotor 

speeds. 
his is due to the fact that the chi-squared distances are computed

or normalized histograms (the sum of bins is equal to 1), i.e., it

easures the shape of the histograms instead of the count esti-

ates. ACF fails to estimate the volume distribution. The power

pectrum based bubble size distribution estimator provided an ac-

urate estimate over all rotor speeds. However, as can be seen from

ig. 6 it slightly underestimates the number of the bubbles with

igh rotor speeds, and overestimates the number with low rotor

peeds. Also, since the method estimates the distribution directly

rom the image, the user cannot be sure if the method is working

orrectly. 

.5. Execution times 

The exact execution times of different methods are not com-

arable due to the different programming environments (MATLAB,

, etc.) and degrees of performance optimization. However, indica-

ive conclusions can be made. ACF and WaldBoost + LBP can be ef-

ciently implemented on PC and programmable hardware allow-

ng real-time performance. The current implementation of the CNN

akes approximately one hour per image to compute. Although the

ethod performance could be optimized considerably, it is still not

ossible to reach real-time performance with large images with

everal hundreds small bubbles, and the CNN is, therefore, only

aluable in off-line use. The execution times for CCA and CHT are
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few seconds per image. The power spectrum method is fast to

compute and it is also fast to train making online training possible.

5. Conclusions 

We compared various bubble detection and size distribution es-

timation methods with industrial image data from a pulpmaking

process. The CNN-based approach outperformed the other meth-

ods in the bubble detection task and provided an accurate es-

timate for the bubble size distribution. However, the method is

slow making it unsuitable for in-line use. The WaldBoost + LBP

and WaldBoost + Trees methods are fast to compute and provided

reasonably accurate bubble detection results. Out of these two,

WaldBoost + Trees was able to detect more bubbles, but it suf-

fered from a slightly higher number of false positives. However,

the amount of false positives was similar in different bubble size

categories making WaldBoost + Trees a better method for the size

distribution estimation. The power spectrum approach for direct

bubble size distribution estimation produced accurate distributions

and it is fast to compute. However, it does not provide the spa-

tial locations of the bubbles. Moreover, from the user perspective,

the method is essentially a black box, and therefore, the user can-

not be sure if the method is working correctly. This is not the case

with the bubble detection methods where the user can easily see if

the method is detecting bubbles correctly. Selecting the most suit-

able method depends on the application. If real-time performance

is not needed, a CNN is the best choice. For in-line measurements

WaldBoost + Trees and the power spectrum based size distribution

estimator provide the most promising solutions. 
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