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Abstract

In our submission to the NVIDIA AI City Challenge
2020, we address the problem of counting vehicles by their
class at multiple intersections. Our solution is based on
counting by tracking principle using convolutional neural
networks in detection and tracking steps of the proposed
method. We have achieved 6th place on the dataset part
A of Track 1 with score S1 Total = 0.8829, (mwRMSE =
4.3616, S1 Effectiveness = 0.9094, S1 Efficiency = 0.8212).
The proposed solution was placed at sixth place in the over-
all ranking on dataset part A.

1. Introduction
In this paper, we address the task of vehicle counting by

their class at multiple intersections of the NVIDIA AI City

Challenge 2020 (i.e. Track1).

Our solution is based on counting by tracking. It benefits

from the usage of convolutional neural networks both in the

detection and tracking steps. Trajectories of vehicles ob-

tained for CNN feature-based tracker are further processed

and analyzed to determine the entry and exit point of each

vehicle for correct counting of trajectories.

To put our approach to a broader context, we include a

brief overview of state of the art in vehicle counting. After

that, we describe the used methods for counting vehicles at

multiple intersections in detail.

2. Vehicles Counting in Image and Video
Counting people or objects in image and video has sev-

eral use cases in various situations such as counting people

crowds in public events, city centers or forbidden areas; de-

termining attendance in schools or lectures; urban planning

or managing high traffic roads, and more.

Crowd counting attracted wider research community

than other object counting topic. In recent years, meth-

ods were published for counting people in crowds in differ-

Figure 1. The main idea of this task — counting vehicles for every

pre-defined movement of interest (travel direction).

ent ways. The first group is focused on detection/tracking

[16, 17, 18, 3, 2, 9, 23], another group is focused on count-

ing by regression/estimating density maps [6, 7, 22]. Nowa-

days, convolutional neural networks dominate in a large

amount of computer vision tasks and crowd counting is no

exception [34, 33, 5, 32, 28, 20].

However, many vehicle counting methods exist based on

crowd counting methods. The following sections provide a

brief overview of vehicle counting methods and the avail-

able datasets.

2.1. Counting Vehicles by Regression/Heat-map Es-
timation

The characteristic feature of these methods is the use of

a heatmap as an expected output of the convolutional neural

network. The heatmap is usually created using a normal dis-

tribution with pre-defined standard deviation value σ over

image annotations. The CNN is then learning the mapping

between the input image and the expected output image.

Counting CNN [21] was explicitly designed for the task
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of car counting, and it belongs to this category. Authors are

using their CNN architecture, which is rather small and fast

to train. They are using patches of 72 × 72 cropped from

an image and heatmap 18 × 18 is the direct output of the

network. Hydra CNN [21] contains multiple instances of

Counting CNN at different scales and combines their out-

puts.

It is possible to use even approaches originally designed

for crowd counting. A great example is Context-Aware
Crown Counting Network [20] which adaptively encodes

multi-level contextual information into their output fea-

tures. Rather than running at different scales, the proposed

network leverages from spatial pyramid pooling [14]. Even

PDANet [1] builds upon the idea of CAN. The PDANet uses

pyramid feature extraction with spatial and channel atten-

tions are attached to the front-end to produce richer fea-

tures. The model also distinguishes between images with

sparse and dense object instances.

2.2. Vehicle Counting by Tracking

There are several approaches to the task of detecting,

tracking, and counting moving vehicles from traffic cam-

eras. Seenouvong et al. [27] proposed a method that uses

a background subtraction technique to find foreground ob-

jects and vehicle counting is done by using a virtual de-

tection zone. Swamy et al. [29] introduced a technique for

detecting and counting the vehicles based on the color space

model.

In recent years, object detection made a big progress

thanks to convolutional neural network-based detectors. We

can divide currently popular detectors into two categories:

Detectors that predict bounding boxes for an image in one

step such as SSD [19] and YOLO [24] and detectors based

on region proposal such as R-FCN [8], R-CNN [12], Fast R-

CNN [11], and Faster R-CNN [26]. Thanks to that progress,

trackers based on tracking-by-detection paradigm, in which

detector firstly detects objects in a frame and secondly, the

tracker performs data association is very popular these days

[4, 31]. The combination of these detectors and trackers is

a suitable solution for counting diverse types of objects in

image or video.

2.3. Vehicle Counting Datasets

Although the research area of car counting is not large

nowadays, datasets exist dedicated to car counting. The

TRANCOS dataset [13] was captured on highways and

it contains 1, 244 images with 46, 700 annotated vehicles.

Images are split into training, testing, and validation sets.

Other datasets are focused more on parking lots than on

roads. PUCPR+ dataset [15] is a subset of PKLot dataset

[10]. Hsieh et al. [15] added additional annotations of car

bounding boxes (17, 000 cars) on a subset (125 images) of

the original PKLot dataset. The PKLot dataset was captured

from the 10th floor of a building from a static camera view-

ing a large parking lot. They also published their drone-

based car counting dataset called CarPK [15]; it contains

1, 500 images with approximately 90, 000 cars.

Unfortunately, these datasets are made for single im-

age car counting using regression/heat-map prediction, then

continuous video counting, which made them unsuitable for

this task.

3. Vehicle Turn Counting Based on Trajecto-
ries

Track 1 of the NVIDIA AI City Challenge 2020 is fo-

cused on counting four-wheel vehicles and freight trucks

that follow pre-defined movements (travel directions) (see

Fig. 1) on different camera scenes which should help DOTs’

traffic engineers in traffic analysis and planning. In this

challenge’s track, the emphasis is placed on effectiveness

(precision of counting) and along that also on efficiency.

The individual processing steps of our solution are de-

scribed in the following sections.

3.1. Determining Entry and Exit Areas

Assigning a vehicle trajectory to a specific travel direc-

tion requires knowledge of vehicle entrance/exit area on the

road. This task is crucial to obtain correct counts for every

possible travel direction. In our case, the entrance and exit

areas were annotated manually using polygonal represen-

tation from 3 to 5 points used for each polygon. For each

travel direction defined by pair of an entrance/exit area, we

also have a user-defined trajectory. Examples of areas de-

fined for each camera together with region-of-interest can

be found in Figure 2.

3.2. Vehicle Detection and Tracking

The proposed solution is based on vehicle detection and

tracking. For every frame of the input video, we first detect

vehicles using a CNN-based detector. In order to achieve

real-time detection or even quicker processing, but still have

a high detection accuracy, we decided to use the YOLOv3-

416 detector [25]. For the tracking task, we decided to use

Simple Online and Real-time Tracking with Deep Associa-
tion Metric (DeepSORT) [31].

For each vehicle, we save its trajectory points. The cen-

troid of the detected vehicle’s bounding box is used as a

point representing the vehicle in the trajectory. When the

vehicle is no longer detected, but it still appears in a frame

of the video (its trajectory has not left the ROI yet), we pre-

dict the next position of the vehicle based on its last trajec-

tory points. We compute the average angle between the last

5 points of vehicle trajectory and the Euclidean distance be-

tween the last 2 points. Based on the computed angle and

distance, we predict the next trajectory point of the vehicle.
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Figure 2. Examples images from 20 cameras in the dataset with annotated entrance/exit areas and pre-defined movements of interests and

ROIs. Images were updated to fit the view better. Ordering of images does not fully correspond to the sequence of camera IDs.

3.2.1 Merging Broken Trajectories

Before the tracker prediction step, we try to deal with long-

term occlusion and detection inaccuracies by a trajectory

merging step. In the case when the vehicle was not visi-

ble for a certain period and then reappeared in a subsequent

frame, it starts its own new trajectory even though the old

trajectory of this vehicle is still predicted.

To deal with this situation, when one vehicle is being

tracked twice, the proposed method is trying to merge bro-

ken trajectories. For each trajectory predicted by the tracker,

we try to find a newly detected vehicle trajectory formed by

2 or 3 points. We compare the latest predicted points of the

tracker-predicted trajectory with the location and direction

of this new trajectory.

If the trajectories are similar in their location and speed,

these two trajectories are merged. This merging prevents

counting two vehicles, instead of a single correct one. This

approach may lead to identity switching, but this is not a

problem if vehicles are travelling in the same direction –

which they are, otherwise they would not be merged by the

algorithm.

3.3. Travel Direction Assigning

The final step is determining the correct travel direction

(movement of interest) for each ended trajectory outside

pre-defined ROIs. The travel directions are defined by pairs

of the entrance/exit areas.

For each detected trajectory, the entrance area is defined

by its intersection with the beginning of this trajectory, or

by the distance to the closest one. The same principle is

applied even for the exit area of each trajectory. This pair

then defines a travel direction.
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Unfinished trajectories In some situations, the detector

can lose the vehicle in the middle of a pre-defined ROI. This

situation may occur, for example, when the vehicle is turn-

ing from one road to another. In such case, the prediction-

based trajectory of the vehicle will continue in the deter-

mined direction (e.g. straight even if the vehicle is turning),

while the detection-based trajectory ends before it exceeds

the border of the ROI. If new detections no longer update

the prediction-based trajectory, it may cause that the vehi-

cle will be counted in the wrong direction.

For these cases, our annotations for every camera con-

tain the average trajectory for each travel direction. When

every point of the detection-based trajectory can be fit to this

average trajectory (point from detection-based trajectory is

inside of polygon, which defines average trajectory), the

prediction-based trajectory will follow this direction, even

if the detection is lost.

4. Experiments
All the experiments were performed on official dataset

part A provided by organizers of this challenge. It contains

31 video clip captured from 20 unique cameras (see Fig. 2)

with about 9 hours of total video length. Provided dataset is

a part of CityFlow dataset [30].

4.1. Evaluation metrics

The evaluation of this task was done using officially pub-

lished evaluation metrics.

The Track 1 is ranked based on evaluation score S1

(Eq. 1) is a weighted combination between the Track 1 ef-

ficiency score S1efficiency and the Track 1 effectiveness

score S1effectiveness.

S1 = αS1efficiency + βS1effectiveness, (1)

where α = 0.3, β = 0.7. The S1efficiency (Eq. 2)

score is based on the total Execution Time of proposed solu-

tion, adjusted by the Efficiency Base factor, and normalized

within the range [0, 5x video play-back time].

S1efficiency = max(0, 1− time× base factor

5× video total time
). (2)

The S1effectiveness score (Eq. 3) is computed as a

weighted average of normalized weighted root mean square

error scores nwRMSE across all videos, movements, and

vehicle classes in the test set, with proportional weights

based on the number of vehicles of the given class in the

movement. The nwRMSE score is the weighted RMSE

(wRMSE) between the predicted and true cumulative ve-

hicle counts, normalized by the true count of vehicles of

that type in that movement. If the wRMSE score is greater

than the true vehicle count, the nwRMSE score is assigned

0, else it is (1-wRMSE/vehicle count). To further reduce

that impact of errors on early segments, the wRMSE score

weighs each record incrementally in order to give more

weight to recent records.

wRMSE =

√√√√ k∑
i=1

wi(x̂i − xi)2, (3)

where wi =
i∑k
j=1 j

=
2i

k(k + 1)
(4)

4.2. Evaluation of Vehicle Turn Counting

The first evaluation on the evaluation server showed

promising results. However, there was still room for im-

provement, especially in processing speed. We experi-

mented with different YOLO detector thresholds. The

baseline experiment (Sub. 001) with detection threshold

0.25 showed effectiveness 0.8993. Efficiency score 0.0000
should not be taken into account as the solution was not

running on our testing machine at that time.

After first submission, we fine-tuned position and ve-

locity parameters in the Kalman filter of the Deep SORT

tracker. After tuning those parameters and changing detec-

tor threshold to 0.20, the effectiveness increased to 0.9094
There were still detection switches between cars and

trucks, so we experimented with different detector thresh-

olds for trucks, but the best effectiveness was achieved by

using the threshold from the baseline experiment.

Complete list of experiments with detection tresholds or

another setting together with an official evaluation can be

found in Table 1. Our final ranking is then showed in Table

2.

5. Conclusions
We participated in one task of the NVIDIA AI City Chal-

lenge 2020: Vehicle Counts by Class at Multiple Intersec-

tions.

Our solution for vehicle counting is based on convo-

lutional neural network detection and CNN feature-based

tracking. Created vehicle trajectories are then matched

to pre-defined movements of interests (travel directions)

using user-defined entrance/exit areas. Proposed solution

achieves solid results with score S1total = 0.8829, which

put us at 6th position in final ranking on dataset part A.
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Submission Detection thresholds
cars / trucks

End area distance
tolerance mwRMSE S1 Effectiveness S1 Efficiency S1 Score

001 0.25 / 0.60 100 px 4.8219 0.8993 0.0000 0.6295

002 0.25 / 0.60 100 px 5.5757 0.8820 0.6725 0.8192

003 0.20 / 0.60 100 px 4.4035 0.9077 0.6776 0.8387

004 0.20 / 0.60 100 px 4.4063 0.9076 0.6666 0.8353

005 0.20 / 0.60 50 px 4.4324 0.9079 0.6669 0.8356

006 0.20 / 0.50 50 px 4.4161 0.9076 0.6660 0.8352

007 0.20 / 0.70 50 px 5.5757 0.8820 0.6671 0.8176

008 0.20 / 0.60 50 px 4.3616 0.9094 0.7868 0.8726

009 0.20 / 0.60 50 px 4.3616 0.9094 0.8212 0.8829
Table 1. Evaluation of challenge Track 1 – Vehicle Counts by Class at Multiple Intersections for individual submitted versions. For

Submission 001 the Efficiency Base Factor = 0.506436. For the rest of the submission the Efficiency Base Factor = 1.205131

Rank Team ID Team Name Score
1 99 Everest 0.9389

2 110 CSAI 0.9346

3 92 INF 0.9292

4 26 Orange-Control 0.8936

5 22 psl2020 0.8852

6 74 GRAPH@FIT BUT 0.8829
7 6 KISTI 0.8540

8 119 PES 0.8254

9 80 HCMUS 0.8064

10 65 BUPT-MCPRL 0.7933

11 40 Insight-DCU 0.7785

12 70 CUIP 0.6922

13 75 Albany NCCU 0.3116

Table 2. Final team ranking for public part of Track 1 – Vehicle

Counts by Class at Multiple Intersections. Our team is highlighted

by bold text.
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