Computers in Biology and Medicine 123 (2020) 103886

Contents lists available at ScienceDirect o
Computers in Biology
and Medicine

Computers in Biology and Medicine
B A

journal homepage: www.elsevier.com/locate/compbiomed

Check for

Skull shape reconstruction using cascaded convolutional networks e
Oldtich Kodym *, Michal Spanél, Adam Herout

Department of Computer Graphics and Multimedia, Brno University of Technology, BoZetéchova 2, 612 66 Brno, Czech Republic

ARTICLE INFO ABSTRACT

Keywords:

Cranial implant design
Anatomical reconstruction

3D shape completion
Convolutional neural networks
Generative adversarial networks

Designing a cranial implant to restore the protective and aesthetic function of the patient’s skull is a challenging
process that requires a substantial amount of manual work, even for an experienced clinician. While computer-
assisted approaches with various levels of required user interaction exist to aid this process, they are usually
only validated on either a single type of simple synthetic defect or a very limited sample of real defects.
The work presented in this paper aims to address two challenges: (i) design a fully automatic 3D shape
reconstruction method that can address diverse shapes of real skull defects in various stages of healing and
(ii) to provide an open dataset for optimization and validation of anatomical reconstruction methods on a set
of synthetically broken skull shapes.

We propose an application of the multi-scale cascade architecture of convolutional neural networks to the
reconstruction task. Such an architecture is able to tackle the issue of trade-off between the output resolution
and the receptive field of the model imposed by GPU memory limitations. Furthermore, we experiment
with both generative and discriminative models and study their behavior during the task of anatomical
reconstruction.

The proposed method achieves an average surface error of 0.59 mm for our synthetic test dataset with as
low as 0.48 mm for unilateral defects of parietal and temporal bone, matching state-of-the-art performance
while being completely automatic. We also show that the model trained on our synthetic dataset is able to
reconstruct real patient defects.

1. Introduction border without any steps and with gaps of less than 0.8 mm between
the implant and remaining tissue [8]. Furthermore, smoothness and

Patient-specific implants (PSIs) are often used for the treatment of symmetry of the anatomy should be preserved to ensure a correct

cranio-facial defects. Especially in cases of larger defects caused by
trauma, tumour resection or decompressive craniectomy, it is usually
required to reconstruct the original skull shape for aesthetic purposes
and protection of intracranial structures against mechanical impact
[1,2].

Current state-of-the-art methods usually comprise of using a patient
CT scan to design the implant pre-operatively and then 3D printing
of the result using bio-compatible materials such as titanium, porous
polyethylene or polyether ether ketone [3,4]. Alternatively, implants
can be cast in a 3D-printed mold from bone cement which can be loaded
with antibiotics to decrease the risk of infection [5]. Such approaches
lead to a reduction of operative time and improved patient results [6].

Provided that precise enough tissue segmentation is obtained from
the CT data, the process of computer-aided design (CAD) of PSIs
remains the most important step that affects the final quality and repro-
ducibility of PSIs [7]. This presents a challenging and tedious task for
the clinician or engineer designing the PSI. To ensure correct healing
and prevent complications, the PSI must fit precisely to the defect

* Corresponding author.
E-mail address: ikodym@fit.vutbr.cz (O. Kodym).

https://doi.org/10.1016/j.compbiomed.2020.103886

aesthetic result [9]. The first step of the implant design is correct
reconstruction of the missing shape of the skull anatomy from which
the PSI is then derived.

1.1. Related work

A considerable number of CAD systems for skull reconstruction
make heavy use of the natural facial symmetry by identifying the best
symmetry plane and then mirroring the healthy part of the skull onto
the defect area [10]. Recent automation of parts of this process led to
an efficient and user-friendly way to provide an aesthetically correct
result. Such methods, however, cannot account for bilateral defects
reaching into both sides of the skull. Also, because the symmetry is
usually not perfect in real cases, manual corrections are often needed to
produce a correct reconstruction. Another group of methods is based on
surface interpolation under the assumption of a nearly spherical shape
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Fig. 1. The proposed skull reconstruction method fully automatically produces a binary shape of the missing part of the skull using sliding-window approach with coarse-resolution

middle step.

Real

Synthetic

Fig. 2. Examples of 3D models and slices through defective skulls from real patients (left) and synthetically generated defective skulls (right). The real patient samples include

defects reconstructed by an experienced clinician.
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Fig. 3. Overview of the 3D CNN backbone architecture example for an input of size
643. Note that for an input of size 128%, the CNN is deeper and the bottleneck tensor
has 384 channels.

of the cranium [11,12]. Interpolation-based methods can guarantee
desired continuity on the tissue-implant interface and also make it pos-
sible to modify the resulting fit by adjusting the parameters. Although
these methods work well on smaller defects, they often struggle with
larger defects because of a lack of constraints and they cannot model
more complex anatomy shapes such as orbitals.

Current state-of-the-art methods usually exploit some kind of de-
formable models [13]. Statistical shape models combined with geomet-
ric morphometrics have been studied extensively in the context of skull
reconstruction [14-16], achieving an average surface error of 0.47 mm
for defects of the parietal and temporal area and 0.75 mm for small
mid-facial defects, as measured on simple synthetically created defects
against the original bone shape. These methods, while providing a good
reconstruction result, rely on a clean, well-defined defect border, which
is rarely the case in real patient cases with complex fractures in various
stages of healing and bone resorption, as can be seen in the example
slice in Fig. 1.

Another interesting approach has recently made use of convo-
lutional denoising auto-encoders in the first attempt to use a deep
learning-based shape completion for skull reconstruction [17], al-
though only operating on a very coarse resolution. More details on the
topic of automatic skull shape reconstruction can be found in the work
of Buonamici et al. [18].

Using deep learning for a general 3D shape reconstruction (also
shape inpainting, shape completion) is a well studied research topic in
the literature. The basic approach is to represent the incomplete input
shape as a binary voxel grid and train a 3D convolutional neural net-
work (CNN) with a deterministic denoising auto-encoder architecture
to output the completed binary shape [19]. These approaches cannot be
utilized for bigger volumes due to GPU memory limitations. To tackle
this, some authors exploit different data representations such as graphs
or point clouds [20,21]. Another group of authors use the 3D CNN only
for coarse shape estimation, refining the result in the post-processing
step [22-24].

An orthogonal research direction in this area led to substituting the
purely discriminative CNN models with generative models such as gen-
erative adversarial networks (GANs) or variational auto-encoders [20,
23,24], suggesting that the shape completion task actually has multiple
correct solutions conditioned on a single input. This issue of one-
to-many mapping has also been raised by authors in the context of
anatomical shape reconstruction [25,26] where inter-expert variability
of the resulting shape is also taken into account. However, the argu-
ment that the variability of the output should be enforced at the cost
of precision measured against the original shape is in a conflict with
the current literature on skull reconstruction where the original shape
is considered to be the ground-truth.

1.2. Contributions
In this work, we design a cascaded CNN architecture for the es-

timation of a high-resolution 3D anatomy shape conditioned on the
input defective skull. Although symmetry is used in the proposed



O. Kodym et al.

Lo
Xi

lefective

Computers in Biology and Medicine 123 (2020) 103886

(YLD' X I‘;Qecl/'ve

128

Fig. 4. Overview of the proposed 3D CNN cascade. The symmetrized low-resolution input X° is fed into the first model f° to produce the missing shape estimation Y. Then,
it is concatenated to the high-resolution input X#' and fed into the second model f#' to produce the final high-resolution missing shape ¥#'. Discriminator CNNs d(-) and latent

vectors z are only used in the generative model.

method as an additional guiding signal, the method can successfully
reconstruct defects reaching into both sides of the skull as well as
into more complex anatomical regions such as orbitals. To the au-
thors’ best knowledge, this is the first deep learning-based method
of 3D shape reconstruction that reaches a high enough resolution to
be clinically viable for the skull reconstruction task. To address the
issue of multiple possibly correct solutions, we also experiment with a
probabilistic generative version of the proposed model. Finally, in order
to improve the reproducibility of research in the area of automatic
skull reconstruction, we introduce an open dataset of skull shapes with
synthetic defects. The dataset mimics the variability in shape, position
and bone resorption present among real patients and we show that
a CNN model trained on this synthetic dataset also performs well on
challenging real patient cases without any further pre-processing.

2. Materials

For training and validation of the proposed method, we used a
public CQ500 dataset [27] as a source of head CT patient data. A total
of 189 of the scans were rigidly aligned and the skulls were segmented
and saved as 3D binary arrays of 512° voxels. Finally, 5 different defects
were created on each segmented skull with an emphasis on simulating
the variability in real defective patient skulls. We simulate the defects
by subtracting randomly deformed combinations of spheres followed
by morphologically rounding the defect edges to account for various
genesis and healing processes of real defects. To allow for structured
validation, the defects were categorized into unilateral parietal, unilat-
eral frontal (the orbital area) and bilateral groups. In addition to these
three groups, two more random defects were generated on each skull.
The resulting dataset of 945 defective skulls with ground-truth original
shapes along with further details is publicly available as the SkullBreak
dataset' and we refer interested readers there for further information
regarding the details of defective skulls generation process.

The synthetic dataset was split into 179 training and 10 testing
skulls, resulting in 895 training and 50 testing defect shapes in total. To
evaluate the ability of our approach to generalize, we also utilized an
internal dataset of 9 real defective patients. For these patients, ground-
truth skull reconstructions made by a clinician experienced in cranial
implant design were available. Several samples from both datasets are
shown in Fig. 2.

3. Methods

We formulate the skull reconstruction task as finding the missing
part of the anatomy represented by binary volume Y = X0, —
Xgefective- Thus, we look for the function f(:) \A{ith parameters 6 that
maps the defec'Eive skull to an estimated shape Y = fp(X . fecrive) from
distribution P(Y|X 4, recrive) Of shapes that correctly complete it.

L https://www.fit.vut.cz/person/ikodym/skullbreak.
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Fig. 5. The overall performance of the discriminative model on different groups of
testing defective skulls. Average surface error [mm] for a simple input (green) and
symmetrized input (blue).

3.1. Reconstruction model architecture

We use a combination of two CNN models with a 3D U-net [28]
backbone to approximate the function f, with parameters 6 being the
trainable weights of the CNN. The individual models differ from the
original 3D U-net in several ways. Instead of up-convolutions, we use
nearest-neighbor up-sampling followed by regular convolution in the
decoder part of the model, as this has been shown to improve the model
training process and performance in some cases [29]. The number
of down-sampling and up-sampling layers is such that the bottleneck
tensor has spatial dimensions of 4> as shown in Fig. 3. This ensures
that the output neurons of the CNN have a sufficient receptive field to
correctly model the shape of missing anatomy in the case of defects
with a large surface area.

Each of the models operates on a different resolution. The first
model, denoted fL°, takes an input volume down-sampled to 643
voxels and is trained to output an estimate of missing anatomy ¥¢ =
flox (fe"fec .ive) ON an equivalent resolution of 3.2mm per voxel. While
this resolution is too low to model anatomy with enough precision,
it can provide an initial estimate of the missing shape. The second
model, denoted fH', then takes a 128 x 128 x 128 crop of the
input data at the original high resolution concatenated to an up-
sampled output of the first model. This model is trained to output
the corresponding patch of the final missing anatomy estimate ¥/ =

FHiYLe x " j,ec .ine)» Which can be viewed as a super-resolution of the
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Fig. 6. Examples of results of the discriminative model reconstructions for parietal, frontal, bilateral and random defects, respectively. From top to bottom: Surface error maps,
input synthetically broken skulls and reconstructed skull shapes. Note that the majority of the reconstructed surface reaches errors of less than one millimeter in all cases.

initial missing anatomy estimate conditioned on the remaining part of
the skull at full resolution.

During inference, the first model provides enough contextual in-
formation about the overall shape of the defective skull while the
second model can ensure precise contact at the defect border. The final
estimate can be inferred by first computing the coarse estimate ¥°¢
and then computing the final estimate Y/ using the sliding window
approach, substantially reducing the memory footprint.

Symmetrized input. The chosen U-net architecture in the low-resolution
CNN is in fact not well suited for transferring information from one side
of the volume to the opposing side as this transfer can only happen in
the deeper layers of the model where the shape information is already
compressed. However, the ability to preserve the anatomical symmetry
is a critical part of the method. To this end, we concatenated a sagitally
flipped copy of the volume to the low-resolution CNN input. This makes
it easier to propagate the symmetry information using convolutional
kernels and skip connections of the U-net architecture. The effect of
symmetrizing input is demonstrated in Section 4.

3.2. Optimization

We optimize the CNNs using training batches of size 2, which
fully utilize the available GPU. An Adam optimizer is used as it is
currently one of the most widely used optimization algorithms suitable
for most deep learning applications [30]. Although we train both CNNs
with their respective loss functions £1° and £, we train the cascade
in an end-to-end manner. The training samples for the first model
(YLe, xLo ) and the random training crops for the second model

defective
(Y Hi xHi ) are always sampled from the same skull volume.

defective

Discriminative model. We first assume that the skull reconstruction task
has a single correct ground-truth solution given by the original missing
anatomy shape Y. This allows us to use a reconstruction loss similar to
a segmentation task. We chose the soft Dice loss [31] due to its good
performance in dealing with class imbalance. The two losses are defined
as

EIL)(;ce = Dice(YLo’fLo(Xzfeofective))’ (1)
Hi _ 1 Hi ¢Hi( Loy L Hi
£Di’ce = Dice (Y ’s f ! (f O(Xdeofecrive)’ Xde[fective)) ’ 2

and we optimize them iteratively for 300000 training steps. While it
is possible to optimize the whole cascade using only the £#' loss, we
found that using the auxiliary loss £1° is necessary for correct model
behavior.
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Fig. 7. The performance of the discriminative model in the context of a reconstructed
surface area. While the variability of the model output errors increases with larger
defects, the results are within an acceptable range even for a majority of the larger
defects.

Generative model. To make the described reconstruction model genera-
tive, we make two modifications well known from GAN literature [32]
to both CNNs. Namely, we add the adversarial loss function L 4,, in the
form of a discriminator CNN d(-), which allows the model to learn the
distribution P(Y|X,, ective)> @nd inject a random latent vector into the
reconstruction CNNs, which allows them to randomly sample from this
distribution. We concatenate the random latent vector with the bottle-
neck tensor of both CNNs as shown in Fig. 4. The discriminator CNNs
have the same architecture as the encoder part of the reconstruction
CNNs with additional dense layers that output the discriminator scores.
We use the improved Wasserstein GAN formulation with gradient
penalty [33] during the training. Given a combination of the defective
skull shape and the missing anatomy shape, the discriminator is trained
to assign a low score d(Y, Xy, fecrive) t0 the ground-truth missing shape
and a high score to the reconstructed missing shape d(¥, X, Fective) AL
both a low and high resolution, using the low-resolution discriminator
d'° and high-resolution discriminator d*’. To optimize the reconstruc-
tion CNNs in this case, we use a combination of the reconstruction
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Fig. 8. Examples of results of the discriminative model reconstructions for a set of defects with different scales on a single test skull. An area where the model output deviates

from the original shape by more than 2mm can be observed in the last case.

Generative model average surface error
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Fig. 9. The overall performance of the generative model on different groups of testing
defective skulls. Average surface error [mm] for reconstruction with random latent

vector (green) and for best-of-five reconstructions (blue).

and adversarial loss, similarly to Wang et al. [24]. The losses of the
reconstruction CNNs in this case are defined as

£L0 = Ef)?ce + a[:ﬁ‘:iv’ (3)
e = el vatt, @

where « is set to 1072. We again optimize d°, f°, d" and fH!
iteratively for 300000 training steps. For an overview of our method
and both discriminative and generative models, see Fig. 4.

4. Experimental results

The experiments discussed in this section were run on a system
with 11GB Titan Xp GPU and a quad-core i5 processor with 24 GB
RAM. The complete training of the models took approximately 8 days.
After the model is trained, the method is able to fully reconstruct each
skull in under 5 s, which is important for its efficient use in clinical
practice. This is achieved by first inferring the low-resolution model
on the full down-sampled volume and then sequentially inferring the
high-resolution model on positions where the low-resolution model
predicted a defect until the whole estimated defect area is processed.
For visualization, the voxel grid was converted into a polygonal mesh
which was then smoothed using a two-step smoothing algorithm [34].

We measured the precision of each method as the average sym-
metric unsigned distance between the surface voxels of the output
reconstruction and the original anatomy shape which we considered
to be ground-truth. We only measured the error on the outer surface of
the skull because the inner surface is not relevant for cranial implant

Table 1
Average surface error [mm] for individual defect groups.

Method Synthetic defects Real defects
UP UF Bi Total

Statistical shape models [15] 0.47 - - - -

Discriminative + simple input 0.69 0.69 0.78 0.68 -

Discriminative + symmetrized input 0.48 0.60 0.73 0.59 0.80

Generative + symmetrized input (random) 0.63 0.71 0.81 0.68 -
Generative + symmetrized input (best of 5) 0.46 0.62 0.65 0.56 0.69

design in the clinical practice. To get more insight into performance of
our method, we divided the evaluation into four groups. The unilateral-
parietal, unilateral-frontal and bilateral defect groups are described in
Section 2 and the combined group includes all the defects, including
random ones. Table 1 contains the average surface error for all models
tested on each defect group.

We first evaluated the performance of the discriminative model and
the effect of the symmetrized input on the error distribution in the
testing set. The model with a simple input was able to reconstruct
each testing skull successfully. However, we noticed that the errors
in unilateral groups reached similar values as the bilateral group.
This is in conflict with the expectation that while bilateral defects
could allow for some variability in correctly completed shapes, the
unilateral defects should be more directly constrained by the condition
of symmetry and thus yield lower surface reconstruction errors. The
effect of symmetrizing input as described in Section 3 was that the
average measured error of the reconstructed unilateral defects dropped
from 0.69mm to 0.48 mm for parietal and from 0.69mm to 0.60 mm
for frontal defects. As expected, the bilateral defects group was less
affected by the symmetrized input, although the error still slightly
decreased since some bilateral defects are in fact partly constrained
by the symmetry. The overall performance of the discriminative model
for both simple and symmetrized input is shown in Fig. 5. The overall
average surface error of the discriminative model with a symmetrized
input for the whole testing set was 0.59 + 0.21 mm. Several examples of
the discriminative model reconstructions are shown in Fig. 6.

In order to explore the relation between the discriminative model
performance and the area of the reconstructed defects, we created an
extra set of nine cranial defects in each of the ten designated test skulls.
The defects were created by subtracting the same shape with different
scales from each skull (see Fig. 8 for their illustration). The surface area
of the resulting skull defects ranged from 10 to 140 cm?. The resulting
surface errors of the discriminative model outputs are shown in Fig. 7
in the form of a scatter plot. While there is an apparent correlation
between the measured surface error and the reconstructed surface area,
the average surface error was under 0.7 mm for all defects up to an area
of 100cm?. For even larger defects, the average surface error exceeded
I mm in several cases. However, for majority of the cases, the surface
errors of the results were still well under this value.
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Fig. 11. Example outputs of the discriminative model for real patient data. Although some reconstruction faults can be seen in the last two cases, suggesting that real training
data of target population should be added to the model in the future, the reconstruction is usually correct. The surface distance to the original shape is well below one millimeter

on average.

Next, we evaluated the performance of the generative model with
symmetrized input volumes and random input latent vectors z. The
overall average surface error was 0.68 + 0.28 mm. For each defect
group, the error of the generative model was higher than that of the
discriminative model. However, it should be noted that since now we
consider multiple correct reconstructions for a single skull defect, the
error measured against the ground-truth shape might not be a good
indicator of the method’s performance. The generative model allows us
to sample multiple different outputs for a single input defective skull by
changing the input latent vectors. Therefore, we also experimented with
generating multiple reconstructions and measuring the best achieved

result. The overall average surface error when measuring the best-of-
five sampled reconstructions for each testing skull was 0.56 + 0.21 mm.
The results for individual defect groups, as seen in Fig. 9, were similar
to the discriminative model in this case. However, a reduction of the
error can be noticed in the bilateral group, with the error reduced from
0.73 mm to 0.65 mm when compared to the discriminative model. This
might once again be explained by the fact that due to weaker symmetry
constraints in this group, the variability of acceptable reconstructions is
greater. Therefore, generating subsequent different samples constrained
on the same input increases the probability of generating at least one
sample close to the original ground-truth shape.
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To further illustrate the behavior of the generative model, we
also conducted an experiment with latent space interpolation for one
bilateral defect. We set both latent vectors for low-resolution z'° and
high-resolution z"! to only contain constant values ¢/10 and we gen-
erated samples for ¢ = 1,2...9. Our experiments showed that the
generative model responds to these changes in total latent vector
energy the most and we leave investigation into the limits of achievable
anatomical variability in the output for future work. The resulting
reconstructions of the generative model along with the ground-truth
original shape are shown in Fig. 10. We also reported the measured
surface errors against the ground-truth shape for each sample. It can
be seen that the model is able to sample from the learned manifold of
solutions, allowing for manipulating the reconstructed shape while still
keeping a seamless connection to the original bone.

Finally, in order to evaluate the ability of our approach to general-
ize, we also tested the performance of the models trained exclusively
on our synthetic dataset on an internal dataset of real defective patients
without any fine-tuning of the model. Both models reconstructed the
real defects mostly successfully. However, there was an expected in-
crease in the surface error in both the discriminative model output and
the best-of-five generative model output. In some cases, there were also
visible faults such as slight depressions or even holes as seen in Fig. 11.

This could be partly attributed to the fact that the real testing pa-
tients come from a different geographic location, in which the anatom-
ical variability of the skull is different [35]. Specifically, the differences
in average shapes of the two datasets aligned using the same alignment
method are illustrated in Fig. 13. The fact that these basic shape
characteristics are learned by the low-resolution reconstruction model
may lead to wrong estimation of the cranial volume in frontal part of
the skull and even holes in parts which extend significantly beyond
the anatomical variability observed in the training dataset. Overall,
the outcome of this experiment is encouraging, although real defective
patient scans from the target population should be added to the training
process before evaluating the method performance in a real clinical
setting.

5. Discussion

For deployment of reconstruction methods into the clinical work-
flow, several conditions must be met. First, symmetry of the skull
should be preserved as well as possible, including in cases where the
patient’s skull itself is partly asymmetric and where the defect reaches
partly into both sides of the skull. Second, the automatic reconstruction
should fit very precisely to the defect borders. Although the models pre-
sented in this work will occasionally produce slightly asymmetric result
or fail to avoid some depressions around the defect border, our results
show that the proposed method can achieve an overall satisfactory
performance in this regard, as illustrated by example reconstructions
in Figs. 6 and 11. The measured average surface errors shown in
Figs. 5 and 7 also show how the performance is affected by different
shapes and sizes of the defects, including bilateral defects, orbital
area reconstructions and defects with surface area of over 100cm?.
The implications of these results for the future implementation of the
method into clinical practice should now be assessed by clinicians with
experience in this area.

In the context of the current state of the art in the area of skull
reconstruction, our approach differs from conventional mirroring-based
and interpolation-based methods by its ability to reconstruct an arbi-
trary part of the skull present in the described dataset without requiring
any parameter adjusting. Its ability to generalize to unseen skulls is,
however, fully dependent on the variability of the training dataset used
for model optimization. Fig. 12 demonstrates how using the model on a
population where shapes of the skulls come from different distribution
causes occasional faults and a slight increase in the average surface
error of the reconstructions. Nevertheless, this issue will be mitigated
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reconstruction of synthetic defects and real defects. Results shown for discriminative
model (green) and for best-of-five outputs of generative model (blue).

by introducing cases from the target population into the dataset and
retraining the reconstruction model in the near future.

Methods based on statistical shape models also possess this de-
pendency on training dataset variability and the potential ability to
model any part of the skull. This makes them very similar to the
approach proposed in this work in terms of possible target use cases.
Fuessinger et al.[15] achieved an average surface error of 0.47 mm
when reconstructing unilateral spherical defects of the cranial area
with a radius of 5cm. This could be compared to the performance of
our discriminative and generative models reaching 0.48 and 0.46 mm
average surface error, respectively, on the unilateral parietal defect
group. In contrast, our method does not require any manual cleaning
of the defect border as the seamless fit of the reconstructed part to the
rest of the skull is handled by the CNN model. It would be interesting to
see the performance of the statistical shape model on more challenging
parts of the introduced dataset such as defects of the orbital area and
larger bilateral defects.

A more general comparison is currently limited by the lack of
standardized datasets and methodology to evaluate the anatomical
reconstruction methods. Especially in the case of bilateral defects in
which symmetry cannot be used to uniquely define the correct output,
we argue that although the absolute distance from the ground-truth
shape might give an adequate estimate of how well a method performs,
it should not be used as the single criterion of correct reconstruction.
In addition to variability in cranium shape, modeling structures such
as skull protuberances, sutures, or uneven surface is unnecessary for
means of PSI design. Therefore, the most relevant metric to measure
the reconstruction method performance would be the amount of time
required by the operating expert to design clinically acceptable PSI
from the initial reconstruction. However, this is infeasible without the
method being deployed into clinical practice.

Since the discriminative model outputs reach lower average surface
error than the randomly sampled outputs of the generative model, it
can be concluded that it is more suitable for a completely automatic
setting. However, the generative model could alternatively be used
in a semi-automatic setting. In case the initial reconstruction is not
satisfactory for further processing, several subsequent samples from the
generative model could be offered to the expert to increase the chance
of avoiding falling back to a less efficient conventional workflow.

Finally, the reconstruction method is not limited to skull recon-
struction task or anatomical reconstruction in general. The method can
potentially be applied to any shape completion task where both global
contextual information as well as fine structural details need to be taken
into account during the data volume reconstruction.
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Fig. 13. Superimposed frontal (left) and axial (right) projections of the segmented skulls. The 10 testing cases of the synthetic dataset rendered in blue and the 7 testing cases of
the internal dataset in red. A difference in several shape characteristics of the skulls can be observed.

6. Conclusions

This work presented a multi-scale cascaded CNN architecture for
general shape completion applied to the reconstruction of missing
skull anatomy in a fully automatic manner. We also showed that
symmetrized input can increase the performance in this task and that
both discriminative and generative models can be used successfully.
The proposed method reaches enough precision and robustness to be
considered in clinical practice. Validation was done on a synthetic
dataset which closely mimics real patient cases and this dataset was
made public.

The model trained exclusively on synthetic data also performs well
on real defective patient cases, but adding samples from the real target
population to the training should be considered in order to improve the
results. Further testing with more patient data in clinical setting is now
required to fully confirm its efficacy and identify any limitations.

Currently, the method is constrained to the cranial and orbital area.
We plan to extend the method and the dataset to include maxilla
and zygomatic bones as well in the future. Adapting the method for
alternative data representations, such as point clouds or graphs, could
also be explored as a way to improve processing speed and precision.
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