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Abstract
This article presents a single-loop approach to a 2-D discrete wavelet transform that allows processing infinitely high-image 
strip-maps. The paper gradually compares several computational strategies to finally show how to deal with a multi-scale 
wavelet transform of infinite image streams. Besides, the transform is followed by a bit-plane encoder which also processes 
data in a single loop. The whole machinery is part of a CCSDS 122.0 image codec which manages to process a single pixel in 
about 33 ns on a contemporary desktop computer, without the contribution of any parallel computing or SIMD vectorization.
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1  Introduction

Perhaps all existing image formats are based on the process-
ing of image frames (frame-based input data), originated, 
e.g., by CCD sensors. However, at least one format is based 
on a different principle. The CCSDS 122.0 is able to process 
infinite strip-based inputs produced by push-broom type sen-
sors. The resolution of the input image is, therefore, infinite 
(as the height is infinite). This requires very specific design 
of the architecture that will be able to handle such kind of 
data. Specifically, all computations must be performed in 
memory-effective fashion and in a single pass through the 
data. This is in sharp contrast to, e.g., the JPEG 2000 format 
which can only hold images of finite dimensions and buffer-
ing of the entire input and output stream is thus allowed.

This short article gradually compares several computa-
tional schemes of the two-dimensional multi-scale discrete 
wavelet transform (DWT), which is the heart of the CCSDS 
122.0 format, and eventually answers the question, “What is 
the best scheme for processing infinite image data?” In more 
detail, the individual schemes are described in Sect. 2 of this 
paper. The same section also describes the CCSDS 122.0 
image compression standard. Subsequent Sect. 3 evaluates 
the schemes and then selects the most efficient one, which 

is able to compress input data with the rate of 33 ns/pixel on 
a desktop computer. The implementation is single-threaded 
and does not exploit any SIMD instructions. Finally, Sect. 5 
concludes the paper.

2 � Related work

The CCSDS 122.0 format [1] can hold images of infinite 
dimensions. However, at least one of its two dimensions 
must be finite. For this reason, it seems appropriate to con-
sume input data line by line (line-based consumption). Simi-
lar to the JPEG 2000 format, the format can compress the 
image either in a lossy or lossless manner. The format can 
also hold high-bit-depth images (25 bits for lossless com-
pression, 28 bits for lossy one). Note that the implementation 
used in this paper can handle 16-bit pixels and internally 
uses 32-bit machine words. The format is based on a three-
level discrete wavelet transform (see Fig. 1 for better men-
tal picture). The transform is computed using either real or 
integer numbers. The real transform is intended for lossy 
compression. Conversely, the integer transform is intended 
for lossless compression. A compressed image is divided 
into segments and blocks, so the data error is not propagated 
much. The blocks and segments must be formed on the fly to 
comply with the single-loop requirement. The format covers 
only the processing of a single image component. The pro-
cessing of individual multispectral components is covered 
by another standard.
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In the beginning, the input image is extended so that its 
dimensions are multiples of eight. Three levels (or scales) of 
the discrete wavelet transform are then calculated. Interest-
ingly, these three levels produce blocks of 8 × 8 coefficients 
with a similar meaning as blocks of 8 × 8 DCT coefficients 
in the JPEG format. See Fig. 2 which illustrates the meaning 
of coefficients within a block. These coefficients are fur-
ther encoded by bit-planes from the most significant to the 
least significant one. When all bit-planes of integer wavelet 
transform are encoded, we got a lossless compression. The 
CCSDS standard uses the CDF 9/7 wavelet [2] for both—the 
real DWT intended for lossy compression as well as the 
integer-to-integer DWT for lossless processing. The JPEG 
2000, on the contrary, uses the CDF 5/3 wavelet for lossless 
compression.

Various computational schemes for 1-D and 2-D DWT 
can be found in the literature. Considering the 1-D transform, 
one usually starts with the transform defined by two com-
plementary FIR filters. The corresponding computational 
scheme is referred to as the convolution. In [3], Sweldens 
and Daubechies showed how the convolution scheme can be 
decomposed into a sequence of simple filtering steps. These 
steps are known as the lifting steps and the scheme as the 
lifting scheme. The lifting scheme asymptotically reduces 
the number of arithmetic operations by a factor of two. It is 

also used for the definition of integer-to-integer transforms 
(lossless compression). Since the lifting scheme comprises 
a sequence of filtering steps, it is tempting to implement it 
as a sequence of passes through the input data (multi-loop 
approach). This has the advantage of easy treatment of the 
signal boundaries. The downside is the repeated eviction of 
intermediate data from the CPU cache [4]. This approach 
is also not compatible with single-loop data processing 
required in our case. Merging these several filtering steps 
into a single pass through the input data forms a single-loop 
algorithm (pipelined computation) [5]. As one might expect, 
the advantage is friendliness to the CPU cache. However, the 
disadvantage is shown in the complicated treatment of sig-
nal boundaries, namely the state-of-the-art algorithms treat 
such boundaries in a complicated and inflexible way, using 
special prolog or epilog phases. In [6], these algorithms are 
extended to perform the treatment using a compact stream-
ing core, possibly in multi-scale fashion. As a result, every 
input sample is visited only once, while the results are pro-
duced immediately, i.e. without buffering. This fits perfectly 
with our single-loop approach.

A two-dimensional DWT is defined [7] as a tensor-prod-
uct of two one-dimensional transforms—one for rows and 
one for columns. Various computational schemes for 2-D 
DWT can be found in the literature as well. These schemes 
include the loop fission (splits the vertical loop so it accesses 
at most as many rows as the cache associativity) [8, 9], 
aggregation (adjacent columns are filtered concurrently) 
[10, 11], usage of complicated memory layouts [12–14], 
interleaving of the vertical and horizontal loop [15–19], 
SIMD vectorization and parallelization [14, 15, 19], etc. 
Basically, naive implementations implement this transform 
using two passes through input data (e.g., OpenJPEG codec). 
Such a solution is simple but very slow (repeated eviction of 
intermediate data from the CPU cache), especially for large 
images. In [19], Kutil presents a single-loop approach to 
2-D DWT, i.e. interleaving horizontal and vertical filtering 
steps. As a result, entire 2-D DWT is computed using the 
lifting in a single pass through the input data. This approach 
does not suffer from any cache-related or other issues, except 
for a very complicated treatment of image boundaries. As 
a consequence, the author uses nine transform phases for 
all combinations of horizontal and vertical filterings. This 
makes the coding arduous and the code very complicated. 
Combining the Kutil’s approach with the approach presented 
in [6] creates a true single-loop approach, i.e. without any 
shortcomings. The last unresolved problem regarding the 
2-D DWT is the computation of multi-scale decomposition, 
which is difficult to compute in a single pass due to buffer-
ing required to start the next level of transform. This step 
has not even been done in [19]. However, such single-loop 
multi-scale processing is necessary for processing infinite 
images and is, therefore, the subject of the rest of this article.

Fig. 1   Illustration of the three-level DWT (on the right) on frequently 
used Lenna image (on the left)

Fig. 2   Illustration of the blocks of 8 × 8 coefficients: a transformed 
image on the left, a subset of transform coefficients rearranged into 
a block on the right. Four wavelet sub-bands are indicated—LL (DC 
coefficient), HL, LH, and HH
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3 � Single‑loop approach

At the beginning, let us take a closer look at the treatment of 
signal boundaries presented in [6]. To better understand this 
algorithm, look at Fig. 3, which shows a data-flow diagram 
of one DWT level with the CDF 9/7 wavelet implemented in 
a floating-point format. The highlighted area is a core, which 
consumes the input signal from left to right (in a single loop) 
and produces output coefficients. The problem with this 
approach is the need to buffer the input signal, at least at its 
beginning and end. The data flow diagram in Fig. 3 consists 
of filtering using 2-tap FIR filters. This FIR filter is shown 
on the left side of Fig. 4. In [6], such a single-loop approach 
is modified in such a way that the input signal does not need 
to be buffered. Instead, the filtering by the 2-tap FIR filter is 
adaptively modified so that it never accesses an undefined 
part of the input signal. This is essentially achieved through 
two switches which are set so that the result of the calcu-
lation corresponds to a symmetric extension of the signal. 
The modification is detailed in the right part of Fig. 4. Since 
this algorithm does not require any input buffering, it can 
be used directly for multi-scale processing. In this case, the 
subsequent levels of DWT are simply triggered interlaced, 
without having to wait for a larger block of input data.

Algorithm 1 (i) separable convolution, sequential
1: for each scale do
2: for each row do
3: for each sample do
4: compute convolution coefficient
5: end for
6: end for
7: for each column do
8: for each sample do
9: compute convolution coefficient
10: end for
11: end for
12: end for

Algorithm 2 (ii) separable multi-loop, sequential
1: for each scale do
2: for each row do
3: for each lifting step do
4: for each second sample do
5: compute lifting step
6: end for
7: end for
8: end for
9: for each column do
10: for each lifting step do
11: for each second sample do
12: compute lifting step
13: end for
14: end for
15: end for
16: end for

Algorithm 3 (iii) separable single-loop, sequential
1: for each scale do
2: for each row do
3: for each two samples do
4: for each lifting step do
5: compute lifting step
6: end for
7: end for
8: end for
9: for each column do
10: for each two samples do
11: for each lifting step do
12: compute lifting step
13: end for
14: end for
15: end for
16: end for

Fig. 3   CDF 9/7 lifting scheme comprising 4 lifting steps (identified 
as �–� ). The highlighted area is evaluated in a single iteration of the 
loop (thus a single-loop approach)

Fig. 4   Detail of the 2-tap FIR filter from the CDF 9/7 data-flow dia-
gram (on the left) and border treatment using the method presented in 
[6] (on the right). The switches (in red) are set according to the posi-
tion in the input signal



	 Journal of Real-Time Image Processing

1 3

Algorithm 4 (iv) line-based, sequential
1: for each scale do
2: for each two rows do
3: compute horizontal transforms
4: for each column do
5: for each lifting step do
6: compute vertical lifting step
7: end for
8: end for
9: end for
10: end for

Algorithm 5 (v) quad-based, sequential
1: for each scale do
2: for each 2× 2 quad in raster scan do
3: for each lifting step do
4: compute vertical lifting step
5: end for
6: for each lifting step do
7: compute horizontal lifting step
8: end for
9: end for
10: end for

Algorithm 6 (vi) quad-based, strips interleaved
1: for each horizontal strip do
2: for each scale do
3: for each 2× 2 quad do
4: for each lifting step do
5: compute vertical lifting step
6: end for
7: for each lifting step do
8: compute horizontal lifting step
9: end for
10: end for
11: end for
12: end for

Algorithm 7 (vii) quad-based, blocks interleaved
1: for each block in raster scan do
2: for each scale do
3: for each 2× 2 quad do
4: for each lifting step do
5: compute vertical lifting step
6: end for
7: for each lifting step do
8: compute horizontal lifting step
9: end for
10: end for
11: end for
12: end for

Because we chose line-based consumption of input data 
and because the CCSDS standard internally divides the 
image into 8 × 8 pixel blocks, it makes sense to implement a 
multi-scale transform either (1a) sequentially (which would 
prohibit processing infinite image strips), or (1b) by inter-
leaving individual levels of the transform in 8-pixel high 
strips, or (1c) by interleaving individual levels in blocks 
8 × 8 pixels. Similar possibilities arise in the implementa-
tion of a single level of the 2-D DWT. The two-dimensional 
transform can be implemented either (2a) in a separable 
fashion, (2b) using line-based processing, or (2c) using the 
true single-loop approach (referred to herein as quad-based, 
since the smallest unit is a quadruple of LL, HL, LH, and 
HH coefficients, see Fig. 5). The underlying one-dimen-
sional transform can be computed using (3a) single-loop 
convolution, (3b) multi-loop lifting, or (3c) single-loop lift-
ing scheme. Because of the two compression modes (lossy 
and lossless), all this has to be implemented twice—once in 
integer arithmetic and a second time using a floating-point 
format. And finally, all this above has to be implemented 
both in the encoder and in the decoder. It brings together 
3 × 3 × 3 × 2 × 2 different implementations, but not all of 
them make sense. However, we have implemented and eval-
uated all the meaningful ones (the implementation used in 
this article is highly configurable). By removing meaning-
less combinations out of this number, the following options 
remain (from the most naive one to the most tuned one): (i) 
convolution, horizontal/vertical transforms separated, scales 
sequentially; (ii) multi-loop lifting, transforms separated, 
scales sequentially; (iii) single-loop lifting, transforms sepa-
rated, scales sequentially; (iv) line-based two-dimensional 
lifting, scales sequentially; (v) quad-based two-dimensional 
lifting, scales sequentially; (vi) quad-based two-dimensional 
lifting, scales interleaved using strips; and (vii) quad-based 
two-dimensional lifting, scales interleaved using blocks. The 
interleaving of subsequent scales in (vi) and (vii) is detailed 
in Fig. 5. One has to transform 4 × 4 quads at the first lev-
els. The resulting LL coefficients are then fed into a sec-
ond-level transform which transforms 2 × 2 quads. Finally, 
the four resulting LL coefficients are fed into a third-level 
transform which computes final results. All these imple-
mentations have been implemented using integer as well as 

Fig. 5   Quadruple (quad) of LL, HL, LH, and HH coefficients (on 
the left) and three-level interleaving of subsequent scales using these 
quads (on the right)
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floating-point numbers, and also on the encoder as well as 
decoder side. To allow the reader to compare the individual 
schemes (i)–(vii), these are presented by the pseudocode 
in Algorithms 1–7. The strip means 8 image lines, and the 
block means 8 × 8 pixels.

The implementation (1a) entails no additional memory 
requirements. The implementations (1b) and (1c) require 
additional buffers proportional to the image width (the finite 
dimension) and number of scales. Similarly, the case (2a) 
does not have any extra memory requirements, whereas (2b) 
and (2c) require for each scale a buffer of the size propor-
tional to the image width. Finally, (3a) and (3b) implementa-
tions require extra space of the same size as the image width 
(cannot be computed in-place). The reason why also (3b) 
requires the extra space is the usage of a different data type 
for intermediate results. Finally, (3c) operates in-place and 
thus does not require any extra memory.

4 � Results

To illustrate the differences, the performance of the three-
level floating-point discrete wavelet transform was evalu-
ated on an x86–64 machine. The code does not exploit any 
SIMD extensions or parallel processing. The results are 
shown in Fig. 6. The x-axis shows the image resolution 
(in megapixels), the y-axis is the processing time per pixel 
(in nanoseconds/pixel). The evaluation was performed in 
three different scenarios—for 4:3 aspect ratio, for 16:9 
ratio, and for 1024-pixel wide strips (infinite strip-based 
data). This is because these aspect ratios are mapped dif-
ferently to the CPU cache due to its limited associativity. 
The results were obtained on the AMD Ryzen Threadrip-
per 2990WX 32-Core Processor (64 MiB L3 cache, 128 
GiB DDR4 @ 2933 MHz). The CPU clock was oscillating 
around 3.8 GHz. One might find that (v) quad-based sin-
gle-loop lifting with sequential scale processing shows the 
highest performance. It achieves asymptotically the time 
about 12.15 ns/pixel on image strips. However, sequen-
tial scale processing precludes the processing of infinite 
image strips. Focusing on the strip-based scenario, one can 
find that (vi) quad-based single-loop lifting with scales 
interleaved in strips is the most powerful scheme suitable 
for processing infinite data. However, its performance is 
worse than in case (v). This is the cost for completely 
single-pass processing. The time asymptotically reaches 
12.95 ns/pixels. On 16:9 ratio, the asymptotic performance 
is even better—11.7 ns/pixel—which corresponds to over 
40 frames per second for Full HD resolution. This is real-
time processing. Note also that single-loop approaches do 
not suffer from cache-related issues and copy the linear 
time complexity of the transform, whereas separable hori-
zontal and vertical loops lead to unpleasant performance 

anomalies. This is especially evident in the 16:9 ratio. The 
same behavior was observed by Kutil in [19]. Finally, note 
that the computation of integer transforms is noticeably 
faster, and decoder-side implementations behave the same 
way as those on the encoder-side.

Let us also look specifically at the implementation (ii), 
which is often implemented in open source libraries (e.g., 
OpenJPEG). This implementation suffers from the per-
formance anomalies that are caused by CPU cache issues. 
The main issue here is that this implementation repeatedly 
accesses data that have already been evicted from the cache. 
Besides, it shows significantly worse performance than all 
single-loop approaches and precludes the processing of infi-
nite image data.

Fig. 6   The performance of the floating-point forward transform. 
From top: 4:3 aspect ratio, 16:9 ratio, and 1024-pixel wide strips
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The second experiment, shown in Fig. 7, evaluates the 
performance of the DWT/BPE chain (wavelet transform fol-
lowed by the bit-plane encoder). The BPE also processes 
the data in a single loop. However, this processing is more 
complicated since it handles data in 8 × 8 blocks, arranges 
these blocks into segments, and then compresses the seg-
ments at once. The evaluation was performed in the same 
scenarios and the same machine. The results largely copy the 
results of the previous experiment. This time only the result 
for 1024-pixel wide strips is shown. Apart from a slowdown 
corresponding to bit-plane encoding, the findings described 
in the previous paragraph are still valid. (vi) quad-based 
single-loop lifting with scales interleaved using strips man-
ages to process a single pixel in about 33 ns, which is still 
enough for real-time processing.

It may be obvious that it is possible to further acceler-
ate the above-evaluated schemes using multi-threading and 
SIMD vectorization. This step was done for example in [19, 
20]. However, such a step only causes shifting the curves 
in Figs. 6 and 7 down, and does not change the behavior of 
the schemes.

5 � Conclusions

It is possible to compute a multi-scale 2-D discrete wavelet 
transform of infinite image strips in real time on a contempo-
rary desktop computer without any contribution of parallel 
processing or SIMD instructions. The key is a single-loop 
transform approach and simple treatment of image bounda-
ries. The implementation presented in this article manages 
to transform a single pixel in about 12.95 ns using floating-
point CDF 9/7 transform. The implementation is part of a 
CCSDS 122.0 image codec which manages to process a 
single pixel in about 33 ns, still considering infinite image 
strips. To allow other developers and scientists to benefit 

from this work and build on it, the codec used in this paper 
has been released as open-source software.1

I believe that the work presented in this article can find 
application in other software implementations of the 2-D 
discrete wavelet transform. It is especially suitable for the 
implementation of the JPEG 2000 format (e.g., OpenJPEG 
or FFmpeg).
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