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Abstract This article presents a new method for auto-

matic calibration of surveillance cameras. We are deal-

ing with traffic surveillance and therefore the camera

is calibrated by observing vehicles; however, other rigid

objects can be used instead. The proposed method is

using keypoints or landmarks automatically detected on

the observed objects by a convolutional neural network.

By using fine-grained recognition of the vehicles (cali-

bration objects), and by knowing the 3D positions of

the landmarks for the (very limited) set of known ob-

jects, the extracted keypoints are used for calibration

of the camera, resulting in internal (focal length) and

external (rotation, translation) parameters and scene

scale of the surveillance camera. We collected a dataset

in two parking lots and equipped it with a calibration

ground truth by measuring multiple distances in the
ground plane. This dataset seems to be more accurate

than the existing comparable data (GT calibration er-

ror reduced from 4.62 % to 0.99 %). Also, the experi-

ments show that our method overcomes the best exist-

ing alternative in terms of accuracy (error reduced from

6.56 % to 4.03 %) and our solution is also more flexible

in terms of viewpoint change and other.

1 Introduction

Camera calibration is an important step in the majority

of machine vision applications. In various surveillance

scenarios, calibration including scale (to tell the posi-

tion in world units, like meters, not in image units) is
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of high importance. While research works treat camera

calibration as a solved problem by showing a checker-

board to the experimental camera, practical applica-

tions often require a calibration procedure that is au-

tomatized and suitable for large scene scales. There is a

large amount of surveillance cameras around the world

and the possibility to calibrate them (in order to be

usable in machine vision applications) without the ne-

cessity of physical presence is essential. Zhang [65] pop-

ularized calibration by inserting a suitable pattern of

known properties; in his case, a planar printed checker-

board is used, but arbitrary planar and non-planar [39,

66] objects have been used since. However, in surveil-

lance of real-world scenes, especially with large numbers

of processed cameras, it is extremely inconvenient to

calibrate the cameras by showing them markers and by

making additional distance measurements in the scene

(e.g. in the midst of the traffic lanes of a highway).

The goal of our work is to develop fully automatic

calibration algorithms for surveillance, providing the in-

ternal camera parameters, camera’s rotation and trans-

lation with regard to the ground plane, and also the

scene’s scale so that measurements can be done in the

world units (meters). We focus on traffic surveillance,

thus in this article, we are using vehicles as objects of

know properties (“markers”), but the algorithms pre-

sented here work with any other suitable rigid objects.

The camera projects every point x in the world 3D

homogeneous coordinates x = (x, y, z, 1)> to its 2D

screen image x′ = (u, v, 1)>:

λx′ = K [R|t] x. (1)

By calibration we mean obtaining internal camera pa-

rameters K, the camera rotation matrix R and its trans-

lation vector t that best model such a projection. The
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Fig. 1 Overview of the proposed approach. Vehicles observed in the input video (dashed – orange) are classified (to obtain
the exact make & model) and processed by a landmark detector (middle dotted – red). For visible landmarks K̄ci , their 3D

positions K̂ci are obtained from a CAD model (top dotted – blue). Pairwise distances from the known 3D positions δ̂(ci, a, b)
are compared with the observed 3D distances δ(ci, a, b, φ) and the camera model φ is optimized (solid – green) by a global
optimization method to obtain the best solution.

principal point can be assumed in the center of the im-

age (surveillance cameras generally meet this assump-

tion [48, 56]), the pixels are square and the skew is

not present, therefore K only contains one unknown

parameter – the focal length. The rotation and trans-

lation [R|t] have six degrees of freedom. Our approach

assumes a planar surface (the road) on which the vehi-

cles are moving. In that case, from the translation vec-

tor t, we are only interested in the height of the camera

above the ground (since there is no given central point

on the ground plane to look for), so in the end, only 5

parameters are sought after.

A similar task is being solved by PnP (Perspective-

n-Point) methods [1, 21, 27, 29, 68]. However, these

algorithms require the knowledge of the focal length

f , which is unknown in our task and it must be op-

timized together with the rest of the calibration pa-

rameters. Even PnPf (PnP with focal length estima-

tion, [44, 67, 69]) methods exist, which are able to find

the focal length, but always from one observation of

a rigid structure, contrary to robust calibration meth-

ods [65] that compute one common K and individual

per-observation [R|t] pairs.

In this paper, we propose a practical calibration

method which does not require any calibration pattern

and relaxes the requirement of straight motion of vehi-

cles (see Figure 1 for an overview of the method). It is

thus useful in more versatile scenarios than the previous

methods, such as parking lots and road intersections,

where vehicles can move in arbitrary and all directions.

However, there are still several assumptions that must

be satisfied – the cars must move on a common ground

plane and there must be a certain number of observa-

tions of vehicles known to the system by their particular

type (make & model). Our method harnesses car detec-

tion, fine-grained classification, and detection of land-

marks on the detected cars (Section 2 gives an overview

of state-of-the-art approaches providing these).

The camera is calibrated from locations of detected

landmarks in the image and the knowledge of their 3D

coordinates in the object local coordinate system of the

recognized cars. We detect cars in the incoming images

(either video or individual images) by Faster R-CNN

detector [47]. We classify the detected cars by their

make & model and keep those detections belonging to

the 9 most frequent models in the data. We use our

previously published recognizer [52, 54] achieving state-

of-the-art results in fine-grained vehicle recognition; it

is based on CNN with modified input with unwrapped

bounding boxes of the cars and other modifications.

Extraction of landmarks in the image is based on a

fully convolution neural network proposed by Newell

et al. [41]. For each landmark, their Stacked Hourglass

Network predicts a probability map, whose maximum

determines the location. This design of the convolu-

tional neural network was used by Wang et al. [61] for

localizing landmarks on vehicles (OIF, Orientation In-

variant Features). Wang et al. collected and labeled a

dataset and trained a model localizing the said land-

marks. The accuracy differs for different landmarks and

the resolution of both the input data (256×256 px) and
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of the regressed map (64×64 px) suggest the limitations

of the localization accuracy.

The calibration itself then takes the observed recog-

nized cars with the landmarks detected as its input and

finds the best combination of parameters by global op-

timization. The optimal set of calibration parameters

must best match the observed landmarks on each ob-

served vehicle to their known 3D locations (unique per

vehicle type).

The main contributions of this article are the fol-

lowing:

– Method for calibrating the surveillance camera

(K [R|t]) automatically only by observing vehicles

— “Calibration from Landmarks”.

– State-of-the-Art accuracy in the task of traffic cam-

era calibration (considerably outperforming Auto-

Calib [3] in accuracy and versatility).

– Evaluation of the limits of the OIF landmark ex-

tractor [61] for the purpose of camera calibration.

– A publicly available dataset from two parking lots

with vehicle observations, recognized vehicle mod-

els, detected landmarks, and ground-truth ground

plane calibration.

2 Background and Related Work

Existing methods for camera calibration applicable in

traffic surveillance are mostly based on manual mea-

surements [37, 38, 42], markers [6, 10, 17, 20, 62], vehicle

movement [9, 12, 48, 53], or other principles like optical

flow, recognition of cars or license plates [3, 13, 28, 36].

With the exceptions of methods [3, 12, 53], traffic

calibration solutions require known dimensions in the

scene (e.g. width of lanes, length of dashed markings,

height of camera, etc.) and thus they cannot be used in

a fully automatic manner. The calibration is often con-

strained to a limited range of viewpoints and it supports

only straight motion of vehicles. Maduro et al. [38] as-

sume a known angle of the camera and a known width

of the traffic lanes. Marker-based methods either use

special markers or horizontal road markings. Cathey

and Dailey [6] detect the vanishing point of the lane

marking with a known lane width. Grammatikopoulos

et al. [17] assume a camera with zero roll and they de-

tect the vanishing point of the road markings. He and

Yung [20] calibrate the camera from a pattern formed

by dashed line markings on the road. Do et al. [10] use

an equilateral triangle with known dimensions drawn

on the road.

Solutions based on vehicle movement typically de-

tect vanishing points in the direction towards the vehi-

cle motion (first VP) and in directions perpendicular to

it (second and third VP). Schoepflin and Dailey [48] use

a background model to detect lane boundaries in the ac-

tivity map. The intersection of lanes is assumed to be

the vanishing point of vehicle motion. The second van-

ishing point is detected from vehicle edges. One known

length in the scene is required for full calibration.

Dubská et al. [12] proposed a fully automatic method

for calibration. It assumes straight movement of cars on

the road; this condition is usually met on freeways, but

it cannot be assumed in parking lots, roundabouts and

similar scenarios. Their method uses a particular form

of cascaded Hough Transform [11] to search for vanish-

ing points and the scene scale is inferred from the mean

size of observed vehicles. Sochor et al. [53] extended this

method by more accurate detection of vanishing points

and scale inference. They use fine-grained recognition

of vehicles and align the bounding box of a known 3D

geometry to the observations in the image. The accu-

racy of this method is sufficient for speed measurement

with mean error of 1.1 kph.

Our method is to some extent similar to AutoCalib [3],

which also observes passing vehicles and forms the cali-

bration. Their camera calibration is optimized by mini-

mizing the re-projection error of known average 3D po-

sitions of detected keypoints on the vehicles from the

rear side. However, AutoCalib must be given the focal

length f as its input and it is limited to a coherent view

of the vehicles (roughly from the rear). Our goal is to

make the calibration algorithm fully automatic (not re-

quiring f), to refrain from any assumptions about the

vehicle’s direction or viewpoint, and to make it accurate

enough to be actually usable (the accuracy of AutoCalib

reported by the authors in their article is 8.98 %).

Fine-Grained Vehicle Recognition

Recently, a number of methods for fine-grained recog-

nition of various objects were published [14, 30, 31, 50],

even for vehicles in particular [32, 34, 43, 52, 54, 64].

The task of fine-grained recognition (classification)

benefits from extra image information provided by parts

of classified objects. However, it cannot be assumed

that the location of such parts is known in advance

nor that the location is the same for all objects of the

same type. Simon and Rodner [50] proposed a method

how to deal with this problem (during training & test

time) by automatic discovery and localization of such

parts.

Lin et al. [31] and Gao et al. [14] approach this prob-

lem differently by using Bilinear Pooling. Lin et al. [31]

use a bilinear classifier [45] to classify features extracted

by convolutional layers from a CNN. Gao et al. [14]

improved this idea and proposed the method for Com-
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pact Bilinear Pooling reducing the number of features

used while preserving the accuracy of classification. The

method proposed by Lin et al. [30] uses three differ-

ent CNNs for localization, alignment, and classifica-

tion of images for general object recognition. Sochor

et al. [54] show that these general fine-grained meth-

ods are not accurate enough for the task of vehicle fine-

grained recognition and specialized approaches must be

used.

A considerable group of existing fine-grained recog-

nition algorithms are specialized on classification of ve-

hicles. Some of them are limited to frontal/rear images

of vehicles: Pearce and Pears [43] use the detection of li-

cense plates to localize the front/rear part of the vehicle

for feature extraction, as these parts are usually very

discriminative for the purpose of recognizing the vehi-

cles. Directly extracted features from frontal images of

cars and exploiting common structure of the vehicle’s

frontal mask are presented in the work by Zhang [64].

A more complex method based on optimizing/fitting

vehicle 3D CAD model to image data for fine-grained

classification was proposed by Lin et al. [32].

State-of-the-art results in this field are achieved by

methods based on Convolutional Neural Networks. Liu

et al. [34] proposed to use Deep Relative Distance trained

on the re-identification task to extract more discrimina-

tive feature vectors, and Coupled Clusters Loss function

during training. On the other hand, Sochor et al. [54]

improve the classification accuracy using an “unwrapped”

version of the 3D bounding box of detected vehicles to

2D plane as additional input of CNN for fine-grained

recognition and other modifications.

Detection of Objects and Vehicles

Convolutional Neural Networks dominate also in the

task of object detection by their accuracy [8, 15, 16, 18,

35, 46, 47, 58]. All of these networks can be divided into

three main meta-architectures based on their behavior.

The feature extractor is the first part of a detection net-

work and it is common for all meta-architectures. Fea-

ture extractor can be any of available CNNs (e.g. VGG-

16 [51], Inception v2 [23], Inception v3 [59], ResNet-

101 [18], MobileNet [22], etc.).

The first meta-architecture is covered by the term

Single Shot Detector (SSD). Although the term SSD

was used as the name of the detector published by Liu

et al. [35], it can denote the whole class of detectors

which use a single feed-forward CNN to directly predict

classes without a second stage classification operation

processing the proposed boxes. Typical representatives

of this group (aside the original SSD detector) are also

YOLO [46] or Multibox [58] and the Region Proposal

1273

2608
1520

1893

1186
1969

1969

1005

1024

19951995

Fig. 2 left: Distances δ̂ (in millimeters) in the 3D model
of Skoda Octavia mk2 car. Only a small subset of all the
distances in the set K̂ci is shown. right: Examples of detected
landmarks on actual vehicles of the same type.

Network (RPN) stage of the Faster R-CNN [47], which

are used to predict class-independent box proposals.

The second meta-architecture is represented by Faster

R-CNN [47]. It is the evolution of R-CNN [16] and Fast

R-CNN [15]. In this setting, detection is divided into

two stages. In the first stage, called the Region Pro-

posal Network (RPN), features are extracted from the

image by an intermediate level of feature extractor and

they are used to predict class-independent box propos-

als. In the second stage, these box proposals are used

to crop extracted features from the feature map which

are passed to the following levels of the feature extrac-

tor to predict classes and class-related boxes. A number

of works have been based on the Faster R-CNN meta-

architecture since 2015 [2, 7, 18, 35, 49, 63] including

SSD and R-FCN.

The last meta-architecture is called Region-based

Fully Convolutional Networks (R-FCN) [8] and it fol-

lows the idea of the Faster R-CNN. However, crops are

taken from the last layer preceding the prediction step,

instead of cropping the features from the same level

where region proposals were predicted. This step re-

duces the per-region computation which leads to faster

prediction then in the case of Faster R-CNN, while ac-

curacies are comparable.

3 Calibration from Landmarks

Our calibration method is based on detection and clas-

sification of vehicles in the video frames. Each video

frame is processed by a neural network for detection and

localization of vehicles (Faster R-CNN by Ren et al. [47],

in our case trained on the COD20k dataset published by

Juránek et al. [24]). The detected vehicles are classified

into fine-grained classes (make & model & submodel &

model year) by using our previously published vehicle

classifier [54]. For the most common models, landmarks

are localized in vehicles’ positions by another neural
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network by Wang et al. [61]. This neural network local-

izes 20 different landmarks in the image with a vehicle

present. Some landmarks can be occluded in the given

frame; the network also decides about the landmarks’

visibility and only visible landmarks are further used.

It should be noted that although we describe the

individual tasks of car detection, recognition and land-

mark localization as decoupled, in a production imple-

mentation, they could and should be merged to a single

neural network predicting for each car its type and lo-

cations of the landmarks at the same time, similarly

to Mask R-CNN [19] or the Panoptic Feature Pyramid

Networks [26], which predict a binary mask for each

detection.

Our solution is based on 2D-3D correspondences

and thus the landmarks must be as precise as possible.

Some of the localized landmarks have an ambiguous 3D

position – for example headlight or fog lamp are hard to

localize in the 3D space. Therefore, not all 20 keypoints

are used, only the 12 most usable landmarks (4 wheels,

2 license plates, 2 logos, 4 corners of vehicle top).

The video is transformed into a set of cars’ observa-

tions:

C = {c1, . . . , cN} (2)

and for each car ci, a set of 2D landmark locations

detected by the neural network [61] is available:

K̄ci =
{
k̄ci
1 , . . . , k̄

ci

K

}
. (3)

Only vehicles of several (9 in our case) most com-

mon car models are included in C, for which precise

3D CAD models are available (details of the particular

dataset are in Section 4). These 3D models were manu-

ally processed to obtain the accurate 3D positions of the

landmarks. Contrary to AutoCalib [3], these locations

differ for different recognized vehicle models. For each

of the observed vehicles ci, the correct 3D positions in

the vehicle’s local coordinate system are available:

K̂ci =
{

k̂ci
1 , . . . , k̂

ci

K

}
. (4)

These precise 3D positions of the landmarks define the

reference 3D distances of the landmarks (pairs of land-

marks, identified by indices a and b) as:

δ̂(ci, a, b) =
∣∣∣k̂ci
a , k̂

ci

b

∣∣∣ , (5)

which is the Euclidean distance of any two potential

landmarks a and b in the model coordinate system. An

example of these distances δ̂(ci, a, b), together with a

few samples of the detected 2D landmarks K̄ci can be

seen in Figure 2.

For each landmark’s projection k̄ci
j , it is possible to

compute its 3D position in the world coordinate sys-

tem based on its known height above the ground plane

(the Z-coordinate in the 3D model k̂ci
j ) and based on

given calibration parameters φ. This reconstructed 3D

position vector will be denoted as kci
j (φ), as it is a func-

tion of the calibration parameters φ, consisting of focal

length f (forming the intrinsic matrix Kφ), rotation

matrix Rφ and translation vector tφ.

Starting with the camera projection (1), in our no-

tation:

λ

[
k̄ci
j

1

]
= Kφ

(
Rφk

ci
j (φ) + tφ

)
, (6)

which can be rearranged to

R−1φ K−1φ λ

[
k̄ci
j

1

]
= kci

j (φ) + R−1φ tφ (7)

and further:

kci
j (φ) = R−1φ

(
K−1φ λ

[
k̄ci
j

1

]
− tφ

)
. (8)

The projective scale λ can be expressed from eq. (7)

by using the Z coordinate known from the CAD model

k̂ci
j . Only the third component of all the column vectors

is used from (7) (operator [x]3 symbolizes extraction of

the third member):

λ =

[
k̂ci
j

]
3

+
[
R−1φ tφ

]
3[

R−1φ K−1φ

[
k̄ci
j

1

]]
3

. (9)

For each car ci and each pair of landmarks a, b in

the world coordinate system kci
j (φ), their 3D distance

can then be computed as:

δ(ci, a, b, φ) = |kci
a (φ),kci

b (φ)| . (10)

Although localization of the landmarks works well

enough (according to [61], 88.8 % of landmarks are cor-

rectly predicted within 3 pixels), it fails significantly

in some cases. In particular, it leads to considerable

outliers in the detection which can impact the cali-

bration process significantly. For this reason, we pro-

pose to compute the re-projection error for each car

ci and transform it to a weight, controlling the im-

pact of the given sample on the whole calibration. The

PnP solver [29] provides extrinsic camera parameters

for each vehicle instance. Given those, the 3D points

from K̂ci are projected to the image plane similarly to

eq. (6), yielding:

K̃ci =
{

k̃ci
1 , . . . , k̃

ci

K

}
. (11)
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The particular vehicle instance ci is then assigned its

individual normalized re-projection error:

ε(ci) =

√√√√√√√√√√
K∑
j=1

∣∣∣k̃ci
j , k̄

ci
j

∣∣∣
K∑
j=1

∣∣∣k̃ci
j ,K

ci

∣∣∣ , (12)

where Kci is the mean of all the points k̄ci . The fraction

normalizes the re-projection error so that vehicle in-

stances of different sizes are mutually comparable. The

PnP computation assumes knowledge of the intrinsic

matrix which is for now considered to be known and its

estimation is discussed later.

For each vehicle ci its normalized re-projection error

ε(ci) is computed by (12), which defines its weight :

wci =

(
1

ε(ci)

)α
, (13)

where α controls the power of the weight and its effect

is studied in Section 5.1.

The total error/cost of the observations in the video

given some calibration parameters φ can be expressed

as follows:

ε(φ) =
1

W

∑
ci∈C

∑
a,b

(
δ(ci, a, b, φ)− δ̂(ci, a, b)

δ̂(ci, a, b)

)2

wci ,

(14)

where W =
∑

ci∈C wci and thus (14) is the weighted

mean of vehicles’ reconstruction errors. The process of

calibration consists of finding such parameters φ that

minimize this error function. In our experiments, we

find the parameters φ by Differential Evolution [57]

minimizing (14). Any other global optimization method

can be used; differential evolution was chosen due to

its fast computation and robustness. We experimented

with local optimizers as well (gradient descent, Ada-

Grad [5], Adam [25], L–BFGS [33]), but they failed so

the problem appears to be considerably non-linear.

Since available 3D positions of landmarks K̂ are lo-

cated in the vehicle’s (local) coordinate system, pro-

jection of these 3D points to the image plane based of

the calibration parameters φ (by eq. (6)) would project

all points near the world coordinate origin (3D coordi-

nates are not available in the world coordinate system).

However, detected 2D landmarks’ positions K̄ are local-

ized in the whole world coordinate system (whole im-

age plane), and thus these projected position do not

correspond to the localized ones. Due to this fact it

is necessary to use the reconstruction error computed

Fig. 3 Sample images from BrnoCompSpeed dataset [55].

from detected 2D landmarks’ positions K̄ instead of the

re-projection error in the image plane.

As was mentioned before, weights (13) are used in

the process of calibration parameters optimization (14).

However, the computation of weights needs projected

points K̃ci which are computed by a PnP solver and

thus the knowledge of the focal length is necessary.

Since the focal length value is assumed to be unknown,

it must be estimated first, and only after it, the weights

wci can be computed. Therefore, the whole calibration

process is twofold; in the first pass, all weights wci are

set to the value 1.0. The estimated value of focal length

in the first pass is used for computing the more accu-

rate weights wci by eq. (12), and these weights are used

during the second pass of the calibration process.

The usage of two iterations of computation (and

also proper weights) seem to be beneficial, since the

error is reduced approximately by 53 % as is described

in Section 5.2.

4 Datasets

Two datasets were used for evaluation of the proposed

method: BrnoCompSpeed dataset published by Sochor

et al. [55], which contains recordings of highways and

is made publicly available and our novel BrnoCarPark

dataset with recordings of parking lots. The latter is

made public along with publication of this article.

BrnoCompSpeed

This dataset was made for speed measurement of ve-

hicles by a single monocular camera. It contains video

recordings of highways captured from the bridge above

the highway in traffic surveillance manner, with ground

truth measurements on road plane and 20,865 vehicles

with ground truth speed (see Figure 3 for a few sam-

ples). The dataset was shot for approximately one hour

at seven different locations with three cameras at each

location, making≈ 21 hours of recordings in total. How-

ever, the dataset only contains straight roads because

of its purpose of vehicle speed measurement and thus
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Fig. 4 Sample images from the new BrnoCarPark dataset
(best viewed in digital). The data include 11 videos from park-
ing lots with different traffic density, parking occupancy, etc.

Fig. 5 Example of ground-truth distance measurements in
the BrnoCarPark dataset.

the movement of the captured vehicles is limited to one

direction only.

BrnoCarPark

In order to be able to better evaluate the proposed

methodology, a novel challenging calibration dataset

BrnoCarPark was created. This dataset contains record-

ings of parking lots with vehicles passing in front of the

camera randomly (see Figure 4). Therefore, the cars

are not moving in any single dominant direction and

the extraction of a single set of vanishing points for

the whole scene is impossible. The recordings were cap-

tured at two locations from different viewpoints (ses-

sions), during various times of the day and somewhat

diverse weather conditions. We make the dataset pub-

licly available on our website1.

4.1 Ground Truth for Evaluation

Both of the datasets are equipped with ground-truth

measurements in the ground plane, which make the

evaluation of the calibration algorithms possible. The

ground truth data consist of measurements between

various points in the real scene’s ground plane and

corresponding 2D positions of the points in the image

plane. The existing BrnoCompSpeed dataset is equipped

with 4−10 measurements in each camera view, typical-

ly in the direction of the vehicles’ movement and in the

1 https://medusa.fit.vutbr.cz/traffic

direction perpendicular to it. For our new BrnoCarPark

dataset, we chose a number of distinctive points in the

camera images and measured distances between them

when the parking lot was empty. We used a laser dis-

tance measurer with precision of ±2 mm declared by its

manufacturer. For each scene, 8− 19 distance measure-

ments are available. One example of the ground truth

distance measurements with marked 2D points in the

frame is depicted in Figure 5.

5 Results

As explained in Section 4.1, each of the testing scenes

is equipped with real-world measurements of distances

between distinguishable points in the ground plane (see

Figure 5 for an example):

D̂ =
{
d̂1, . . . , d̂D

}
. (15)

The 2D endpoints of these measurements can be pro-

jected from the image plane to the ground plane by the

calibration parameters obtained by our method, by us-

ing the same technique as described in Section 3, eq. (8).

The measurements between the points re-projected in

this manner

D = {d1, . . . , dD} (16)

can be evaluated against the ground truth D̂ by mea-

suring the relative root mean square error:

RMSE =

√√√√ 1

D

D∑
i=1

(
di − d̂i
d̂i

)2

, (17)

similarly to AutoCalib [3] and thus we can compare

our results with AutoCalib results. It should be noted

that direct comparison with “classical” calibration ap-

proaches [65] is impossible, because a large checker-

board (as wide as several meters) is not feasible, and

when the camera is calibrated from a near distance

with letter paper-sized checkerboards, it re-focuses and

changes its parameters.

Although all the real-world measurements and the

corresponding annotations of the 2D points in the scene

images were made as precise as possible, some inaccura-

cies must inevitably occur. In order to quantify these,

we made a calibration based on the 2D ground-truth

measurements D̂, by using the same methodology as

described in Section 3 (with all the point’s Z coordi-

nate being 0). The ground truth calibration errors in

the individual scenes are plotted in Figure 6 as the red

bars. The same graph also shows the error (17) of our

method for all the scenes (as measured by the more or

less accurate ground truth).
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Fig. 6 Accuracy of the proposed calibration method vs ground truth calibration. The red bars describe ground truth calibration
and the blue bars describe proposed algorithm accuracy; red and blue horizontal lines are averages per dataset (dashed) and
over all measurements (solid). All is evaluated on BrnoCompSpeed (left part) dataset and new BrnoCarPark dataset (right
part). The ground truth calibration has an average RMSE of 0.99 % and the proposed method has an average RMSE of 4.03 %.

We compared our proposed method to AutoCalib –

the state-of-the-art alternative solution. Since the au-

thors did not make AutoCalib code public, we reim-

plemented their algorithm according to their paper [3].

We used the same landmarks as in our method and

also shared the 3D models. We assume that this should

constitute an improvement to the original AutoCalib

method, because then only rear views of the vehicles

were used and the set of the landmarks was thus greatly

limited. Also, the authors of AutoCalib used one united

3D model representing all sedan vehicles by estimat-

ing some average landmark positions and they do not

distinguish between individual vehicle models. Focal

length values are necessary for AutoCalib method –

these are available within BrnoCompSpeed dataset, for

the BrnoCarPark dataset, focal length values computed

by ground truth estimation, as was mentioned earlier in

this section, were used.

The comparison of our method with AutoCalib is

shown in Figure 7. The mean RMSE across all the

scenes was decreased from 6.56 % by AutoCalib to 4.03 %

by our approach. It should be noted that Bhardwaj

et al. [3] report the error of 8.98 % on their data in

their paper; our implementation thus seems on par or

even slightly better than the original solution (though

it should be noted that the evaluation dataset is differ-

ent).

In all our experiments, the Differential Evolution

parameters are set as follows: population size (number

of parents, NP ) – 15 times the number of parameters

(75); crossover probability (CR) – 0.9; dither technique

for setting weighting factor F is used and values are

randomly selected for each generation from the inter-

val [0.5, 1.0]; the method for creating trial candidates

is DE/best/1/bin (the notation and meaning of all the

parameters is explained by Storn and Price [57]).

5.1 Weighting Parameter α Used for Calibration

As explained in Section 3, it is beneficial to use weights

wci of the observed vehicles during calibration process.

These weights are meant to suppress the influence of

vehicles whose landmarks were detected inaccurately.

Figure 8 shows the result of an experiment designed to

look for the proper parameter α used for the calibration

(13). Different parameters α were tested and for each

of them, the plot shows the distribution of the errors

(17) across all the scenes shown in Figures 6 and 7. The

blue boxplot shows the median value (black central line)

and quartils; the red dotted line in each box shows the

average error across all the scenes. Hollow circles show

major outliers – scenes that notably failed.

As can be seen from eq. (13), parameter α empha-

sizes vehicles with a smaller re-projection error (12) and

suppresses vehicles with a higher error. It appears that

small values of α lead to instability caused by using the

majority of vehicles which can also contain very noisy

landmarks detections, but on the other hand, large α

tends to use very few vehicles with the smallest re-

projection error and not exploiting extra information

from the other vehicles detected. Therefore in the ex-

periments reported here, α = 4 was used. It should be

mentioned that the average error across all the scenes

is smaller than AutoCalib result 6.56 % in all possible

tested values of parameter α.
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Fig. 7 Comparison of accuracy for the proposed and AutoCalib method. Average results are as follows: BrnoCompSpeed
dataset – AutoCalib 6.84 %, ours 3.08 %; BrnoCarPark dataset – AutoCalib 5.98 %, ours 5.84 % (it should be mentioned that
AutoCalib failed significantly on scene S6 and thus this single scene is not evaluated for AutoCalib method); both datasets –
AutoCalib 6.56 %, ours 4.03 %.
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Fig. 8 Calibration error with different values of parameter
α used for calibration.

1 2 3 4 5
Iterations

4

5

6

7

8

RM
SE

 (%
)

Fig. 9 Error with different count of calibration iterations.

5.2 Number of Calibration Iterations

At the end of Section 3, we described that the whole

calibration process is twofold. In the first step, the cali-

bration process is computed with weights wci set to the

value 1.0 and in the second step the weights are com-

puted with more precise focal length value obtained in

the first step. We also made an experiment if more it-

erations with re-computation of the weights with new

value of the focal length are beneficial.

Figure 9 shows the result of the experiment; it is

apparent that one iteration of calibration with weights

set to the value 1.0 produces a much higher error than

the usage of multiple iterations. It seems that a higher

number of iterations is not so beneficial, where the

largest error reduction is between one and two itera-

tions (about 53 % error reduction), thus two iterations

are used within our experiments. The high reduction

of error between one and two iterations also shows the

advantage of the weights used, as in the case of one

iteration, weights are neglected (set to 1.0).

5.3 Study of Calibration Parameters

Till now we considered almost perfect camera with prin-

cipal point in the middle of image plane and with no

distortion present. However, in real scenarios, cameras

can suffer by distortion and thus we experimented how

the proposed method can handle this situation. We

extended the described method so that it also esti-

mates the principal point and the distortion parame-

ters. In this setting, intrinsic matrix K contains also the

principal point and before the computation of 3D dis-

tances (10), localized 2D landmarks are undistorted by

the distortion parameters. Since the experiment should

only prove the ability to extend the proposed method by

other calibration parameters, only two radial distortion

parameters k1, k2 are used (different models of camera

distortion work with different numbers of parameters).
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Calibration parameters Data Error

f, rx, ry, rz, tz Original 4.03 %
f, rx, ry, rz, tz Distorted 5.15 %
f, rx, ry, rz, tz, px, py, k1, k2 Original 4.01 %
f, rx, ry, rz, tz, px, py, k1, k2 Distorted 4.05 %

Table 1 Error of variant with extended parameters and dis-
torted data.

The first two distortion parameters are the most influ-

encing ones [60] and thus these are crucial and we are

not interested in the others. The computation of undis-

torted points with some distortion parameters can be

used as follows:

xu = xd(1 + k1r
2 + k2r

4)

yu = yd(1 + k1r
2 + k2r

4),
(18)

where r2 = x2u + y2u, (xu, yu) is undistorted point, and

(xd, yd) is distorted point. These equations can be ap-

proximated by iterative algorithm and further details

can be found in [4, 60].

We tested two settings — in the first one, the pre-

cision of calibration was tested on unchanged original

dataset only with extension of the estimated calibration

parameters. The second experiment should test how

the method can deal with distortion and thus local-

ized 2D landmarks in the image plane were distorted

by randomly set distortion parameters k1 and k2 (in

our experiment, random values with uniform distribu-

tion from ranges (−1.0; 1.0) and (0.0; 3.0) were used for

k1 and k2 respectively). As can be seen in Table 1, our

method seems to be able to handle both cases – both

the extended number of parameters, and the case when

the input data are really distorted. Although the re-

sults for the case of extended parameters estimation

are slightly better, the main disadvantage of this ap-

proach is computational time — 4 additional param-

eters (px, py, k1, k2) must be estimated, and therefore

the computation takes more than twice as much time.

6 Future Work

The results presented in Section 5 are a considerable im-

provement over the previous state-of-the-art method [3],

but they are still not totally satisfying: both the accu-

racy of the ground truth (around 1 % error) and the

results of the calibration themselves (around 4 % error

evaluated by the mentioned ground truth). We have

carried out preliminary experiments which should lead

to considerable improvement of the accuracy. The cal-

ibration methodology presented in this article remains

the same; the improvements are centered in providing

Fig. 10 Experiments with more precise ground truth cal-
ibration measurements. left: Two people place a rope with
regular marks (five 1 m sections in this case) into multiple
locations in front of the camera. right: In a short and un-
complicated process, a high number of precise measurements
can be obtained – for each rope placement, one frame of the
video gives several very accurate distance measurements in
the ground plane by manual or automatic recognition of the
distance marks.

Fig. 11 SfM reconstruction of a particular vehicle model,
later used for accurate landmark localization. left: one frame
of the source video, with the keypoints marked by green, right:
reconstructed point cloud; points are candidate landmarks for
the calibration.

better inputs to the algorithms: providing both bet-

ter ground truth measurements and even more impor-

tantly, better landmarks on the vehicle.

Firstly, Figure 10 illustrates the new approach to

ground truth measurements. The motivation for the

new design is twofold. The measurements done with a

precisely constructed straight rope are more precise, be-

cause they do not rely on distances between ambiguous

natural elements in the scene. Besides, this approach al-

lows to obtain a multitude of measurements with small

effort and in a short time. Each rope placement provides

several (five in the shown case) measurements along one

straight line, and the rope can be easily placed into mul-

tiple locations and orientations. The experiment cap-

tured in Figure 10 resulted in ground-truth calibration

of around 0.45 % (cross-validated on the rope measure-

ments).

Secondly, the keypoints/landmarks on the vehicles

can be extracted specifically for the given type of the

observed vehicle, not by the generic (and fairly impre-

cise) extractor used now [61]. The true 3D distances

δ̂(ci, a, b) are already make & model specific (Sec. 3),

and therefore assuming fine-grained recognition of the

vehicle ([52, 54]) does not constitute a new requirement.

We made a detailed reconstruction of one vehicle (Toy-

ota Auris SW 2017) from a walk-around video by us-

ing an existing Structure-from-Motion solution Open-
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Fig. 12 Observations of a vehicle of known type, whose land-
marks can be obtained accurately and their mutual distances
are reconstructed precisely (Fig. 11).

MVG [40], see Figure 11. This vehicle moved randomly

in the scene and 25 observations varying in the vehi-

cle’s location and orientation were selected, see Fig. 12.

The landmarks/keypoints were manually extracted and

their real-world 3D distances δ̂(ci, a, b) were obtained

from the point cloud reconstructed by the SfM. The

calibration obtained by our algorithm from this input

achieved error of 0.79 % (evaluated by the new ground

truth, Figure 10). We are working on making this pro-

cess fully automatic, but this preliminary experiment

shows that the algorithm presented in this article can

promise very usable accuracy, when the input data is

sufficiently precise. The purpose of this section is to

show that such precise input data indeed could be ob-

tained.

7 Conclusion

This article presents a methodology for automatic cali-

bration of a surveillance camera by observing vehicles.

Contrary to previous solutions, the new method does

not assume a particular view direction to the vehicles,

it does not require straight motion of vehicles, and it

does not require any extra information (such as the

camera focal length). The solution was evaluated on

a previously published dataset BrnoCompSpeed, where

vehicles are moving in straight and mutually parallel

trajectories. It was also measured on a set of videos col-

lected at two parking lots called BrnoCarPark, where

vehicles are occluded, varying in their observed size, and

they move on arbitrary and very variable trajectories.

When collecting this dataset, we measured multiple dis-

tances in the ground plane for obtaining a ground truth

calibration. We make this set of videos, together with

source codes, public for future research and for compar-

ison.

The evaluation shows that the proposed approach

is considerably more accurate than its predecessor Au-

toCalib [3] (error decreased from 6.56 % to 4.03 %); at

the same time, our solution is more flexible and robust,

and it does not require the camera’s focal length as the

input. Still the accuracy is not sufficient for many ap-

plications; we seem to be facing the limits imposed by

the small amount of vehicle landmarks and especially

by their inaccuracy. Experiments show that the pro-

posed method can deal with camera distortion as well

and estimate the distortion parameters.

In Section 6, we show preliminary experiments in-

dicating that the methodology presented in this arti-

cle could lead to a much more precise calibration, if

the method is provided with more accurate and model-

specific landmarks on the vehicles. We are currently

investigating this possibility.
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