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Abstract Light field rendering belongs to image-

based rendering methods that do not use 3D models

but only images of the scene as the input to render

new views. Light field approximation, represented

as a set of images, suffers from so-called refocusing

artifacts due to different depth values of the pixels

in the scene. Without the information about the

depth in the scene, a proper focusing of the light

field scene is limited to a single focusing distance.

The correct focusing method is addressed in this work

and a real-time solution for focusing of light field

scenes, based on statistical analysis of the pixel values

contributing to final image, is proposed. Compared

to existing techniques, this method does not need a

precomputed or acquired depth information. Memory

requirements and streaming bandwidth are reduced

and real-time rendering is possible even when using

a high resolution light field data, yielding visually

satisfactory results. Experimental evaluation of the

proposed method implemented on GPU is presented in

this paper.

Keywords image-based rendering; light field;

plenoptic function; computational

photography.

1 Introduction

3D scene can be represented using a set of objects

described by their material attributes, geometry,

and applied transformations. Such a geometric

representation of the scene can be rendered using

various methods, such as rasterization, ray-tracing, etc.
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Complexity of the scene, however, considerably affects

the time necessary for the rendering process. Image-

based rendering is an alternative way of producing

new views of the scene where, instead of geometric

representation, visual information about the scene is

used. This representation usually consists of a set

of images of the scene taken from different positions

and angles. Performance of the image-based rendering

methods does not depend on the scene’s content.

Field of light in a scene can be ideally described with

a function representing lightning information for each

point in the space and each direction relative to this

point. The scene then can be visually reconstructed

using arbitrary camera position and orientation. For

usage in computer science, such a continuous function

would be impossible to represent; therefore, a discrete

structure that consists of images of the scene is usually

used as a so-called 4D light field approximation as

illustrated in Figure 1. The input images sample the

scene from expected viewing angles, which provides as

much of visual information about the scene as possible.

The higher number of such images is available, the

better quality of the final render can be achieved.

Storing more images, however, increases the space

requirements in memory. The goal of light field

rendering methods is to use only a sparse set of image

samples while achieving the best visual quality of the

rendered result. In practice, light field can be viewed

as an extension of classic photography which allows the

user to focus on different parts of the scene or even

change the camera position in post-processing.

Lack of information about the 3D geometry of the

scene leads to the problems connected with a novel

view image reconstruction. This work is focused on the

elimination of so-called out-of-focus areas in light field

without additional information about the depth or 3D

models of the scene. When using the approximation of

light field by a set of images, the pixel values that are

combined together in the final render have to be taken

from the same spot in the scene. This kind of spatial
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Fig. 1 Scene captured by a grid of cameras. Light field

approximation consisting of the images from this grid can be

used to reconstruct a novel view from any camera position

outside the bounding volume of the scene. Three cameras

are highlighted in the figure with rays coming through a pixel

with the same coordinates on the viewing plane, each providing

lightning information from a different part of the scene.

information for each pixel has to be estimated and used

to achieve the correct focusing for the final image as

shown in Figure 2. The proposed method is based on

statistical analysis of the pixel values that are at the end

combined, using shift-sum algorithm [2], into one pixel

color in the resulting image. The method iterates over a

range of focusing distances and stores the best distance

for each pixel in a focus map. The best distance is

chosen according to the minimal variance of the pixels,

contributing to the interpolation process. A weighted

shift-sum algorithm is used for the interpolation of the

final image and for the pixel analysis. A novel view is

synthesized using the generated focus map. With this

method, visually acceptable all focused light field scenes

can be rendered from the input set of images without

further knowledge about the original scene.

2 Related work

The flow of light in a space can be described by a

7D plenoptic function L = P (x, y, z, θ, ϕ, t, λ) [1]. In

terms of geometric optics, this function returns the light

intensity (L) of an incoming ray to a point in 3D space

(x, y, z) from a given direction (θ, ϕ). This value can

change in time (t) and vary for each wavelength (λ). For

practical usage, this function can be approximated by a

4D representation which is commonly referred as light

field [24]. Let us assume that a scene is located between

two parallel planes with a virtual camera outside. Rays

coming from its center of projection intersect those

two planes, producing one intersection point per plane.

The intersection coordinates with camera plane (st)

are then used to decide which images from the input

are being used for the final pixel interpolation and the

coordinates from image plane (uv) are used to get the

correct pixels from the given images. Input images are

typically captured in a regular grid that is mapped on

the camera plane in a way that the location of the image

in the grid corresponds to the location on the camera

plane. The chosen image, according to the intersection

coordinates, is then mapped on the image plane. The

position of the image plane affects focusing distance of

the light field. Objects in the scene that are located

at the focusing distance are in focus while the rest of

the scene is blurred. To achieve a sharp image with

all parts of the scene being in focus, intersection points

on image plane need to be corrected, using depth of

the scene. A simplified geometry of the scene can

be used [14] as a scene surface approximation that

would replace the planar image plane. Depth maps

can also be used for the ray intersection correction

and to enhance photographic effects such as depth

of field [18]. The generalized concept of the two

planes parametrization can be extended to support

various light field shapes using two spheres, point

and direction etc. [27]. Instead of plane intersection

calculations, a shift-sum algorithm might be used for

the interpolation [2], using a simple shifting of the

input images and a summation of the corresponding

pixels. Authors also proposed possible depth-aided user

definitions of the focusing plane. Shift-sum algorithm

is used as a part of the proposed method in this

paper, not only for refocusing but also for the camera

position change, using input image weights. The

mutual orientation between the intersection point on

the geometric proxy and the arbitrarily positioned

input cameras can be used directly without regular

grids to determine which pixels contribute to the result

most [6]. An alternative approach to the two planes

parametrization is a view dependent texture mapping

on a simplified scene geometry where each polygon is

associated with a part of the texture acquired from the

light field. This texture might change according to

the viewing angle of the virtual camera [11]. Finally

a simple way to generate synthetic views from two

neighbouring light field images is to use the optical flow

aided interpolation [5].
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Fig. 2 Left: Comparison of fully focused light field image as a result of the proposed method with light field focused on single

distance. Right: From the input set of images taken by camera grid, a new synthetic view of the scene is generated having every

location in the scene focused as if captured by a pinhole camera. The proposed method performs real-time per-pixel focusing which

solves the task of light field focusing without having 3D models of the scene available. Focusing distance values for each pixel are

estimated and stored in a focus map which resembles disparity or depth map of the scene. This map is used to achieve a correct

focusing of each pixel.

Because most of the rendering methods rely on the

depth information, depth maps have to be estimated

from the input images if they are not already available

(using depth sensors on the capturing spot or obtaining

them from synthetic scenes). A semi-global matching

method was developed for a dense disparity estimation

from rectified stereo images by searching for most

similar pixel blocks between the images in predefined

directions and search range [17]. The lowest cost

(error) disparity is chosen in the end. In this

way, disparity maps can be obtained from the light

field images and filtered, resulting in a depth map

approximation [3]. Optical flow based depth estimation

methods using feature matching in images also exist

but they are generally very slow [37]. An optimized

approach was proposed where four corner light field

images are used to obtain disparity maps which are

then aggregated using an energy minimization and

warped into the resulting views [20]. Graph Cuts

method for the energy minimization for multi-camera

scene reconstruction was proposed earlier as well [22].

Spatio-aware edge-aware filter can be used to estimate

dense depth maps from first sparse phase which is

faster than the whole dense optical flow calculation

[9]. For datasets acquired by plenoptic cameras a

depth-from-light-field technique exploiting symmetry

property of the focal stack was proposed [26]. Another

technique suitable for the plenoptic camera datasets

uses spatial variance after angular integration of the

epipolar image for defocus depth cues and angular

variance for correspondence depth cues estimation [39].

Small radius matching windows can be used when

having a lot of images in the light field datasets.

Flat uniform regions which are not suitable for such

approach can be analyzed in a lower resolution, leading

to multi-resolution matching approaches [28]. The

multi-resolution depth estimation can also be used

when working with wide-baseline sparse datasets. The

whole capturing and rendering pipeline using such

approach with a point cloud projection based final

image synthesis has already been proposed [32]. Using

more cameras than the 4 × 4 proposed grid to achieve

better rendering results in this pipeline might, however,

negatively affect the performance. The extremely

narrow baseline in lenslet light field camera datasets

causes problems when estimating depth or disparity

from such data. This problem can be solved by

exploiting phase-shift theorem in the Fourier domain

to estimate sub-pixel shifts [19]. The performance of

depth or disparity estimation methods is in most cases

not sufficient for real-time usage along with rendering.

Optimized methods for light field data are also usually

working well with the plenoptic camera data but not

with the large baseline datasets. The proposed method

uses only the necessary information from a subset of

light field images and generates only one necessary map

for the novel view, reducing memory access operations.

Light field images can also be analysed in spectral

domain by using image transformations, analyzing

frequencies present in the images. One of the

3
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depth independent reconstruction methods exploits the

sparsity in continuous Fourier domain to sample light

field effectively, gaining the best possible quality [35].

Densely sampled epipolar-plane image reconstruction

using shearlet transfrom can be achieved exploiting

the light field sparsity in shearlet domain [40]. A

way of finding the optimal sampling pattern for the

light field reconstruction was published, defining a

new sampling quality metric that outperforms the

maximized minimum distance and reduces the search

space, using symmetry constraints [34].

Both of the above-mentioned tasks are also addressed

by deep learning approaches, be it the depth extraction

[12, 30] or rendering based on few reference images [13,

15]. An unsupervised approach working with planar

light fields, using one network for disparity and one

for occlusion map estimation managed to yield results

comparable to supervised approaches, overcoming the

full supervision methods’ drawbacks [29].

The closest published research to this paper is All in-

Focus View Synthesis from Under-Sampled Light Fields

[38]. The method first generates tens of differently

focused views for a given viewpoint, using standard

light field rendering methods. Areas in focus are then

chosen [36] from the previously generated views and the

final image is constructed from them. This approach,

however, was demonstrated only on small resolution

images with a small distance between the cameras.

It also uses multiple synthesis filters, exploiting the

density of Lytro dataset, which might not work well on

the sparse datasets. The method was further improved

but it is still unusable for real-time rendering [23]. All-

focus image can also be generated using high dynamic

range light field [25], where position, direction and

exposure time information is integrated in the light field

model. Local focusing planes can be also estimated

for each view or even for each triangle of the resulting

viewing plane by simple minimization of least square

error [16].

3 Light field focusing

The original light field rendering [24] and other

derived methods support one focusing plane where the

image is constructed and focused. An effect similar

to depth-of-field in classic photography is present in

such an image. However, this effect is not always

desired and an all focused image, as if captured by

a pinhole camera, is often needed. To achieve this,

each pixel of the image has to be focused to a different

distance according to the scene geometry. Depth

differences of the scene geometry lead to a parallax

effect. The apparent position of an object differs on

each view which can be described by a disparity map.

The amount of displacement of the object depends

on its depth. Figure 3 shows the scenario where the

two planes parametrization is used. To correct the

rays, depth or geometry information from the scene is

necessary.

Fig. 3 The focusing distance effect in the two planes

light field parametrization (planes drawn as lines). Two rays

coming from the virtual camera c intersect the scene’s geometry

in points a and b. The original sampling cameras ci are

evenly distributed along the st plane. New sampling rays are

emitted from the closest cameras (c5, c6 and c7) to ast and

bst converging at the focusing distance on the camera c ray

vector. The image captured by the given sampling camera is

projected on the uv plane and the intersection points a′
uv, a′′

uv

and b′uv, b′′uv determine which pixels are taken into the final

interpolation. The intersection points a′
uv, a′′

uv demonstrate the

correct situation where each camera ray intersects the geometry

in a correct place. Points b′uv, b′′uv simply intersect the uv

plane, ignoring the geometry in the scene (rays are sampling

the geometry in different places) which leads to blurry image as

shown in Figure 4.

Even if one focusing distance is enough for the user,

the resulting out-of-focus effect is simply created by

composing the images on top of each other, resulting

in block artifacts caused by the discrete light field

representation as demonstrated in Figure 4. The

sparser the light field image grid representation is,

the higher is the amount of block artifacts due

to the inability to reconstruct the continuous light

field. Again, depth or disparity information would be

necessary to decide which parts of the image should be

filtered to simulate a smooth blur effect.

4 Proposed rendering method

The proposed method consists of two steps. The

first step involves a focus map generation where each

pixel of the map contains a focusing value. The second

step is the final image composition using the focus map

values. In the end, each pixel has its own focusing value,

eliminating the single global focusing distance related
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Fig. 4 The leftmost picture shows the original cube object

which is in focus. The second picture is a ground truth out-

of-focus cube where the defocusing is simulated using Gaussian

blur filter. Next ones show the defocusing generated by shifting

the focusing plane in two planes method when using 8 × 8 and

4×4 light field grid respectively. Block artifacts are visible with

the decreasing grid dimensions.

issues as shown in Figure 2.

4.1 Weighted shift-sum algorithm

In the shift-sum algorithm [2], the output pixel is

a result of a sum of pixels from different views (the

input images from the camera grid). The resulting pixel

values contain lightning information (usually color).

The pixels contributing to the result are shifted by

an offset in the views depending on their position in

the input grid (further images have to be shifted more

than images closer to a chosen reference position in the

grid). In this way, a single focusing distance image

can be rendered. The pixels capturing the objects

in the scene that share the same distance from the

camera grid overlap in the resulting sum. Despite

being from different views, their colors are similar or

the same. To achieve the 3D effect when moving a

virtual camera, weights can be used to prioritize views

from the grid that are most relevant, according to the

angle between a vector from the input view grid center

to the virtual camera center and the view grid plane.

It is not necessary to sample all the images, just those

that are within a certain distance from the virtual view.

The distance is defined globally, as the same value for

all pixels. The algorithm is described by Equation 1

with the description of each variable in Table 1. One

iteration of the algorithm is depicted in Figure 5.

po(c, f) =

∑n
i=1 pi(c+ oi · f) · wi∑n

i=1 wi
(1)

4.2 Focus map

The generation of the focus map is based on a

similar concept as the semi-global matching method

[17], searching for the disparity value in a given range

with the lowest cost. The weighted shift-sum algorithm

is used to generate new views in various focusing

distances. When the whole focusing range is iteratively

i index of current input view

po function computing the output pixel

pi pixel from ith view

n number of input views

c coordinates in the output image

oi offset between images in the grid

f view shift (focus distance)

wi weight of the pixel

Tab. 1 Description of each variable used in Equation 1.

scanned, each pixel is in a certain iteration in focus.

The number of tested distances depends on how densely

the focusing range is sampled and can be increased

for wide depth range scenes. For each pixel and

each focusing distance, a variance is computed during

summation based on Chebyshev distance between the

pixel values (which was experimentally proven to be the

most suitable metric in this case; generally the choice

of color metric for given task is problematic [33]). The

variance is calculated using the mean value from the

set of colors of the contributing pixels in the shift-sum.

At the end, the pixel with the lowest variance value

is chosen, and the corresponding focusing distance is

stored in the focus map. The whole process is outlined

in Algorithm 1. The distance is simply stored as

the index of the focusing step, and the final focusing

value is recalculated in fragment shader. This way,

the necessary bit depth of the map needs to cover just

the number of the searched distances. This statistical

analysis of the contributions to the final pixel value can

determine whether the pixel is focused.

4.3 Final image synthesis

The same shift-sum algorithm is used for the final

image synthesis. Each pixel of the output image is

computed according to the Equation 1, mixing pixels

from images in the grid that are within the defined

distance from the new synthetic view. Each pixel is

interpolated as depicted in Figure 5 and the coordinates

of the sampled pixels are computed by adding the

relative offset of the new view and the currently

sampled image from the grid, multiplied by focusing

distance from the focus map to the currently computed

pixel coordinates (c + oi · f from Equation 1, where

the offset is a shift of the sampled image from the

synthetic one). The focusing distance was previously

acquired from the Algorithm 1. While in the focus

map generation, a variance was the desired result of

the summation, now the resulting color is used for

the final image. In the presented algorithm, it is

5



6 T. Chlubna et al.

Data: Grid of images, position of virtual camera,

focusing bounds, focus step

Result: Focus map, focused pixel color

for c = 0; c < focusMapPixels.size(); c++ do

variances = Array[focusLevels];

colors = Array[focusLevels];

for i = 0; i < focusLevels; i++; do

f = focusStart + i*focusStep;

pixel = shiftSum(camPos, f, c, grid);

variances[i] = pixel.variance;

colors[i] = pixel.color;

end

focusMapPixels[c] = variances.indexOfMin();

pixelColor = colors[focusMapPixels[c]];

end

Algorithm 1: Focus map estimation iterating over a

range of focusing distances and choosing the value with

minimal variance from the shift sum-phase. Function

shiftSum uses the shift-sum algorithm (Equation 1)

and returns the final color and variance of the colors,

contributing in the summation, using Algorithm 2. This

algorithm was generalized, returning also the focused

pixel color. The image synthesis is, however, separated

in the reference implementation.

possible to acquire the final image color directly but the

focus map generation and the final image composition

steps are separated, so each one can produce the

result in a different resolution. In the image synthesis,

only the outer loop over all pixels of the image is

necessary, performing only the shift-sum with a focus

value taken from the focus map. A better performance

without significant quality loss can be achieved by the

generation of the focus map in a lower resolution than

the final image, as had been proven experimentally.

That is the key element for a real-time usage. Sample

result of both final image and focus map is shown on

Figure 6.

5 GPU utilization scheme

The method can exploit massive parallelism available

on GPU architectures. OpenGL was used for

both rendering and GPGPU computations in the

reference implementation. The focus map generation

is performed in a compute shader. Each warp (32

threads on NVIDIA cards) is assigned to one pixel.

Each workgroup consists of 8 neighbouring pixels. This

scheme offers a good GPU occupancy and memory

access coherency, allowing an in-warp data transfer

between the threads which is much faster than using

the global or local memory. Each thread is computing

one focusing distance (or more when denser search

Fig. 5 One iteration of the shift-sum based image synthesis

where a pixel from ith image is taken into the summation of

the output pixel po. The red box depicts the new synthetic

image, the purple lines are showing the offsets relative to the

currently sampled image and the distance between the two

images. The currently sampled pixel’s weight (wi) depends on

the distance between the two images. Used symbols correspond

to the Equation 1. The x and y superscript denotes the first and

the second element of the vector variable.

is required), using the weighted shift-sum and the

Welford’s variance algorithm [42] (Algorithm 2) which

improves the GPU occupancy by reducing the necessary

number of registers. At the end, the minimal variance

value within a warp is being found using parallel

reduction with ballot operation. In the fragment

shader, a surface representing the light field is rendered

using the weighted shift-sum algorithm again, this time

with the correct focusing values from the previously

generated focus map. The focus map and the input

images are stored as textures; therefore, the missing

pixels can be interpolated in texturing units if the

resolutions of the result and the focus map differ.

Figure 7 describes the work distribution on GPU.

6 Evaluation

The purpose of the first experiment was to determine

which color distance metric would be the most suitable

one when computing the variance from the resulting

color summation. The overall quality was measured

in the second experiment, evaluating how good visual

results can this method reach. The third experiment

had been carried out to find out the trade-off between

performance and visual quality when reducing the focus

map dimensions. The fourth experiment, similarly to

the previous one, investigated the optimal depth of

the resulting focus map. The fifth experiment had

been performed to decide how many images from the

input grid need to be sampled and the last experiment

analyzed how the camera grid parameters of the dataset
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Fig. 6 Focused result using the Pavilion dataset with a

correspondent focus map. The focus map contains estimated

focusing value for each pixel of the final image. The map

resembles depth or disparity map for the given synthetic view

because the focusing values depend on the distance of the pixel

from the camera.

affect the quality of the results of the proposed method.

Datasets used in the experiments captured with

camera array come from Stanford light field archives

[41], light field captured by the plenoptic camera Lytro

Illum belongs to EPFL Light-field dataset [31] and

synthetic dataset was rendered on Barcelona Pavilion

scene which is available at the Blender demo files page

[8]. Only one Lytro dataset was used because the

distance between Lytro views is very small due to its

capturing mechanism based on a special lens creating

multiple close views. While it is an ideal dataset

for refocusing, it has a very limited ability to move

the virtual camera, creating the 3D viewing effect.

In all experiments, a ground truth center view from

the original dataset was chosen as a reference and it

was compared using SSIM and PSNR metrics to a

new synthetic view rendered by the proposed method.

Pavilion dataset was used for the performance tests

because its resolution is big enough and reflects the

commonly used FullHD video standard. One dataset is

enough for performance tests because the computation

time of the proposed method depends only on its

parameters and dataset resolution and not on the

content of the input images. All experiments were

Data: Stream of pixel values

Result: Estimated variance

n = 0;

mean = 0;

m2 = 0;

for pixel in input do

n++;

delta = pixel-mean;

distance = pixelDistance(pixel, mean);

mean += delta/n;

m2 += distance*pixelDistance(pixel, mean);

end

m2 /= n-1;

Algorithm 2: Welford’s method for computing online

variance in one pass, adjusted to pixel values

(RGB colors in reference implementation) comparison

purposes. This algorithm is used in the shift-sum,

analyzing new color values coming into the summation.

executed on a machine equipped with Nvidia GeForce

RTX 2070 GPU and Intel(R) Core(TM) i5-8500 CPU

@ 3.00GHz CPU, running Arch Linux.

6.1 Color distance metric

The variance computation phase in the proposed

algorithm requires a pixel color value distance metric

to decide how much do two pixels differ in terms

of color similarity. The right choice of the metric

depends on various aspects such as expected color

range, type of images or a final use-case. The first

measurement was the comparison of various RGB color

distance metrics to find out which one would yield the

best visual quality results for light field datasets as

showed in Figure 8. The quality differences were not

significant but computational complexity of the metrics

differed and might negatively affect the performance

(e.g. DeltaE). Chebyshew metric was chosen for

further experiments because of high-quality results and

computational simplicity.

6.2 Overall quality

For each dataset (Figure 9), the best initial focusing

level and search step was manually found and the

resulting images were compared to the reference. Final

visual quality is evaluated in Figure 10. The images

are focused in all parts, but interpolation artifacts

are visible in the problematic parts such as around

thin edges or near similarly colored areas. A detailed

look at the interpolation artifacts is captured in Figure

11. Bunny dataset contains only diffuse material

and is clearly separated from the black background;

therefore, the reconstruction had minimum artifacts.

7
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Workgroup = 8 pixels

FOCUS 
MAP 
PIXEL

INPUT
PIXELS Σ VARIANCE

Thread =  focusing distance test

MINIMAL
VARIANCE

+
FOCUS

DISTANCE

PARALLEL
REDUCTION

(BALLOT)

Warp = focus map pixel

...

Fig. 7 Work distribution on the GPU for focus map generation.

The compute shader analyses the input images, going through

the focusing range and saving the focusing value with a minimal

variance in the focus map. Because the workload is divided into

warp sized elements no global or local synchronization is needed.

Even though Chess dataset contains a lot of reflections

the chessboard pattern along with a relatively small

distance between the views improved the quality of the

result. Buldozer contains a lot of small details that are

clearly separated from the yellow construction of the

model which again causes higher variance values when

mixing nearby pixels. Lego dataset is filled with a single

color area where for example on the wall in the back

small edges or details are hard to detect, and the pixels

interpolated from surrounding area might yield lower

variance. The distance between Lytro cameras is small

so the result was expected to be better but due to the

technical drawbacks of the camera, the input images

are containing subtle noise that negatively affects the

evaluation. Pavilion contains both big similar colored

areas and complex objects with many details but the

distance between cameras is a bit bigger to allow more

freedom when moving the virtual camera. Figure 12

shows the elapsed times of focus map generation and

final compositing of pixels from each dataset.

6.3 Comparison to other methods

An accurate performance comparison to state of

the art methods is complicated due to different

methodology and outputs. The proposed method

generates focus map for the new synthetic view

used in the rendering stage. The process can be

roughly compared to depth or disparity map estimation

algorithms. Table 2 is an indicative overview of

computation times of this stage.

A side-by side visual quality comparison with

33.98 34 34.02 34.04 34.06 34.08

ChebyshevW

Manhattan

EuclideanW

Canberra

YUV

Euclidean

Minkowski

Chebyshev

HSV

DeltaE

PSNR [dB]

0.917 0.918 0.919 0.920 0.921 0.922

DeltaE

Canberra

Manhattan

HSV

Euclidean

EuclideanW

ChebyshevW

Minkowski

Chebyshev

YUV

SSIM

Fig. 8 A comparison of the RGB color distance metrics for the

pixel similarity test during the variance computation phase. The

W suffix at metric name stands for weighted metrics. Average

results from all tested datasets are presented.

state of the art methods is shown in Figure 19.

Methods that are capable of producing the synthetic

view directly from the images were chosen for the

evaluation. The proposed method outperforms other

similar approaches. View reconstruction on Bunny

dataset, using the biggest competitor, the shearlet

approach [40], measured on GeForce GTX Titan X

takes 5 s which is unsuitable for real-time rendering.

The proposed method does not reach the same visual

quality as newer learning based methods [29] when

measured on the same dataset that was used in the

original paper, but slightly outperforms older methods

[21] (indirect comparison on Kitchen and Museum

datasets, difference about 1 dB [29]). The proposed

method, however, does not depend on the training

process.

Measurements show that the new proposed method

is comparable to the other published algorithms in

terms of visual quality, reaching performance suitable

for real-time rendering. Rendering times can be further

8
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Fig. 9 Reference views from each dataset used in the

experiments. From top left: Buldozer, Bunny, Chess, Lego,

Pavilion, Lytro.

Method Architecture Resolution Time

Proposed RTX 2070 1920 × 1080 × 64 18 ms

[4] Tesla C2050 640 × 480 × 2 16 ms

[3] E3-1245 V2 541 × 376 × 9 1.5 s

[20] i7 2.8GHz 512 × 512 × 49 13 min

[9] i7-6700k 512 × 512 × 49 0.8 s

[10] Quadro M1000M 1920 × 1080 × 45 1.58 s

Tab. 2 Overview of computation times of state of the art depth

or disparity estimation methods from light fields.

improved by slight reduction of visual quality as shown

in Figure 13.

6.4 Focus map resolution

One of the key features of the proposed method is

the separation of the focus map generation from the

interpolation of the final result. Figure 13 shows how

reduction of the focus map size affects the computation

time and visual quality of the final image. Surprisingly,

the quality does not decrease rapidly even with a

significant focus map downscaling. In certain cases,

the quality even improves because some areas with

incorrect focusing levels are smoothened due to filtering

caused by resizing. However small map size can assign

same focusing level on nearby objects that might not lie

in the same distance which causes out-of-focus artifacts

as shown in Figure 14.

30 35 40

Lytro

Lego

Pavillion

Buldozer

Chess

Bunny

PSNR [dB]

0.880 0.900 0.920 0.940 0.960

Pavillion

Lego

Lytro

Buldozer

Bunny

Chess

SSIM

Fig. 10 Best results when rendering a new view from each

dataset compared to the ground truth. Rendering settings were

manually adjusted to reach the best visual quality. Some of the

results are shown in Figures 2, 6, 11, 14 and 19.

6.5 Focus range search density

Bit depth of the focus map affects how accurate

the focusing distance is. Increasing the number

of search samples when iterating over the focusing

distances in given range does not affect the visual

quality significantly and slows down the computation

unnecessarily as shown in the Figure 16. 32 samples

proved to be an optimal choice for most of the datasets.

The most significant difference in quality was measured

on Pavilion dataset which has the biggest depth range

which is the only case where denser searching is

necessary, especially when the objects in the scene are

linearly distributed over the whole depth range.

6.6 Camera grid sample radius

The experimental results shown in Figure 17 show

how many images need to be sampled when getting

the pixel values for the resulting pixel sum. The plots

show that sampling window in the input grid gives

optimal results when having radius about 2 grid views

wide. The value might slightly differ, depending on

the dataset. Wider radius leads to more texture reads

and excessive memory access which slows down the

computation most. The sample distance is a radius

of a circle with virtual camera position as its center.

Surrounding images from the grid in distance from

zero to the sampling distance radius are taken into

account during the interpolation. When the radius is

too wide, images from distant places in the grid might

9
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Reference Rendered

Fig. 11 Reference images are placed in the left column. Right

column contains rendered reconstructed images with zoomed

detail of interpolation artifacts caused by incorrect focusing level

estimation in the affected pixels.

add unwanted ghosting artifacts in the final result,

forcing the algorithm to use views that are showing the

scene from a different angle than expected.

6.7 Camera grid parameters

The Pavilion dataset was used to measure the

relation between visual quality of the reconstructed

view and distance between cameras with various focal

lengths. The distance between cameras, field of view,

total depth range in the scene, and position of the

camera grid in the scene affect the quality of the

resulting reconstruction as showed in Figure 18. The

camera setup used in the scene can be viewed in Figure

15. With an increasing space between cameras or

decreasing field of view (increasing focal length), the

differences between views increase and the interpolation

is more prone to visual artifacts. On the other hand, the

more different the camera positions of view cones are,

the more freedom is gained for the virtual camera. This

issue can be solved with denser sampling [7], providing

more views in the grid, increasing its dimensions.

This, however, leads to higher memory or bandwidth

requirements.

7 Conclusion

The task of light field focusing was addressed in

this research, resulting in a novel method for per-pixel

analysis and rendering of synthetic light field views.

This method, compared to the state of the art, does

not require precomputed or exported depth or scene

geometry information which also reduces memory and

0 5 10 15 20

Buldozer

1536x1152

Bunny

1024x1024

Chess

1400x800

Lego

1024x1024

Lytro

624x432

Pavillion

1920x1080

Elapsed time [ms]

Focus map

Full

1/4

1/8

Drawing

Full

1/4

1/8

Fig. 12 Elapsed time of the focus map generation and drawing

which depends on the focus map and resulting image resolution

respectively. Full, 1/4 and 1/8 sized focus map is used in

these measurements. Drawing time slightly increases when using

smaller focus map most likely due to coordinates interpolation

in texturing units due to resolution mismatch.

bandwidth requirements and computes the resulting

view in low enough times suitable for interactive

applications while maintaining a good visual quality

of the result. The method uses a simple statistical

analysis of the colors contributing to each pixel of the

final result. Each resulting pixel value can be computed

independently on the rest of the image without an

excessive memory access. The proposed principle is

general enough to be used with every commonly used

light field representation or parametrization. This

research also revealed important information about the

relation between the visual quality and computation

time when adjusting parameters of the interpolation

shift-sum algorithm. Massive parallelism of GPU

allows this method to run in real-time even on high

resolution datasets, corresponding to current video

standards. This method also works on datasets with

larger distances between the input views than from

datasets acquired with the current plenoptic cameras.

Visual artifacts are visible in the current version

of the proposed method. They are caused by wrong

focusing distances for the given pixels. The statistical

method might fail if the tested pixel is blurred in a

way that the resulting variance is actually lower than

the one obtained by analyzing the correct focusing

10
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Fig. 13 Relation of visual quality, computation time, and amount of focus map dimensions division. The results are averaged

from all tested datasets.

Focus map Rendered view

Ground truth

2× smaller

20× smaller

50× smaller

Fig. 14 Focusing artifacts caused by low resolution focus map.

The first image shows reference image with generated depth map.

The other ones are results with focus map dimensions divided by

2, 20 and 50 with the used focus maps.

distance. This can happen when thin edges or small

details are surrounded by similarly colored areas. The

global minimum of the variance does, therefore, not

always lead to the best result. An analysis of the

variance values and local minimums might be a way

to select a better focusing value.

As a future work, additional experiments with focus

map filtering will be carried out. Preliminary tests

showed that median filter might be used to denoise the

map slightly, improving the visual quality. Resulting

focus map can be also used to simulate additional

photographic effects such as depth of field. It is

necessary to define focusing range for each dataset

manually. The searching bounds might be estimated

automatically based on another statistical analysis

detecting the overall amount of blur in the scene.

Fig. 15 The size of the grid (red circle) in Pavilion scene

and the value of field of view was animated and resulting

reconstruction quality was measured. Two views from the

corners of the grid using 25mm focal length are placed in the

middle and 55mm ones at the bottom. The difference between

views is bigger in the 55mm version.
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Fig. 16 The plot shows how is the overall quality of the result affected when searching the focusing range more densely. The

quality metric values are average results from all tested datasets.
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Fig. 17 Maximal sample distance parameter and its relation to both visual quality of the result and computation time. The results

are average results from all tested datasets.
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Fig. 18 The camera grid contains 8x8 cameras and is initially 2m wide in the scene-space. The first visible surface is about 1m

far from the grid, and the furthest visible spot excluding the sky is about 90m away. The camera grid is uniformly scaled up and

down to change the distance between cameras.
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Fig. 19 Side-by-side visual comparison with other state of the art methods, rendering a new synthetic view. The proposed method

outperforms other general methods but does not reach the same quality as learning based methods, trained on the specific dataset.

The results of direct methods do not show any significant differences and are almost identical with difference below 1 dB from the

proposed method. Slight, few pixels large, blur artifacts are visible around certain details in all cases. The proposed method produces

the sharpest result. New learning based methods produce better results in parts of the image with thin and reflective objects. They,

however, depend on the training process and dataset. Reflections and thin details can cause problems in the proposed method, when

comparing pixel colors from different views. The proposed method was compared to Vagharshakyan [40], Shi [35], Brox [5] and Ni

[29].
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