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A B S T R A C T   

Correct virtual reconstruction of a defective skull is a prerequisite for successful cranioplasty and its automati
zation has the potential for accelerating and standardizing the clinical workflow. This work provides a deep 
learning-based method for the reconstruction of a skull shape and cranial implant design on clinical data of 
patients indicated for cranioplasty. The method is based on a cascade of multi-branch volumetric CNNs that 
enables simultaneous training on two different types of cranioplasty ground-truth data: the skull patch, which 
represents the exact shape of the missing part of the original skull, and which can be easily created artificially 
from healthy skulls, and expert-designed cranial implant shapes that are much harder to acquire. The proposed 
method reaches an average surface distance of the reconstructed skull patches of 0.67 mm on a clinical test set of 
75 defective skulls. It also achieves a 12% reduction of a newly proposed defect border Gaussian curvature error 
metric, compared to a baseline model trained on synthetic data only. Additionally, it produces directly 3D 
printable cranial implant shapes with a Dice coefficient 0.88 and a surface error of 0.65 mm. The outputs of the 
proposed skull reconstruction method reach good quality and can be considered for use in semi- or fully auto
matic clinical cranial implant design workflows.   

1. Introduction 

Cranioplasty is a procedure that restores the aesthetic, mechanical, 
and protective function of a defective skull by implanting material into 
the defect area. Although autologous bone or pre-formed titanium 
meshes can be used as implants, 3D printable implants have been shown 
to be more versatile and to have several other advantages, such as a 
lower risk of complications or lower chance of requiring secondary 
surgery [1,2]. Manufacturing these implants requires modeling their 
shape in computer-assisted design (CAD) software as the first step. This 
virtual reconstruction, however, requires the human operator to have 
sufficient knowledge of skull anatomy as well as skill in 3D modeling. 
Even if these requirements are met, correctly modeling the implant is 
time-consuming even for a skilled operator, especially in cases of defects 
reaching into both lateral sides of the skull [3]. Automatically producing 
fast and precise estimations of the implant shapes could therefore lead to 
increased standardization and efficiency of cranioplasty clinical work
flow. In recent years, skull shape reconstruction methods based on 
volumetric convolutional neural networks (CNNs) have shown great 
promise in this regard [4,5,6], yet they remain mostly untested on real 

patient data, which limits their potential of translation into clinical 
practice. This article deals with the issue of using these CNN-based 
models on real patient data and improving their performance with the 
use of multi-task learning, as illustrated in Fig. 1. 

Most recent (semi-)automatic skull reconstruction methods aim to 
solve the task of finding the exact shape of the missing part of the skull. 
We refer to this type of reconstruction output as a skull patch in this 
article. The main criteria for a successful skull patch estimation is an 
anatomically plausible, symmetric shape with a smooth and seamless fit 
along the defect border. In clinical practice, this allows the operator to 
use the estimated skull patch as a template for the final cranial implant 
design in CAD software. Conventional skull reconstruction methods use 
mirroring of the healthy side of the skull onto the defective side [7], 
surface interpolations [8,9] or their combination [10] to estimate the 
skull patch. Statistical shape models [11] greatly expanded the range of 
skull defects that can be reconstructed automatically [12,13,14]. In 
recent years, the research focus shifted to volumetric convolutional 
neural networks (CNNs) which have shown great promise in fast and 
robust skull patch reconstruction [4,6,15] and became the method of 
choice in the 2020 AutoImplant challenge [5]. The CNN-based methods 
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are usually trained and evaluated using synthetic defects created by 
removing some part of a healthy skull, resulting in virtually an infinite 
amount of different samples. 

The final shape of the cranial implant (referred to simply as implant 
for the remainder of this article) differs from the shape of the skull patch 
in several ways (see Fig. 2). The implants have a constant thickness 
different from the original bone and have some spatial tolerance along 
the defect border to account for scar tissue and continuing bone growth, 
ensuring implantability. The shape of the implant can also be estimated 
directly by a CNN model, provided that sufficient training data is 
available for training. Although it is more difficult to edit this kind of 
shape in CAD software due to fine details along the defect border, it has 
the potential to be used in a fully automatic setting when no human 
operator, or not enough time for a manual design, is available, for 
example in intra-operative rapid manufacturing of cranial implants 
[16]. 

Synthetic datasets for automatic estimation of skull patches recently 
became available because they are easy to create from public databases 
of healthy skulls, such as CQ500 [17]. However, they do not necessarily 
fully cover the defective skull shape distribution of target clinical data (i. 
e. different anatomical variability of the target population, defect shapes 
and sizes, complex morphology of defect border), which may affect the 
resulting reconstruction quality in practice [4]. Real clinical data with 
expert-designed implant models are, on the other hand, difficult to 
obtain. Furthermore, in our experience, the distribution of available 
clinical data is often biased towards simple unilateral defect cases and 
not easily extendable by synthetic defect and implant shapes. The more 
challenging bilateral and fronto-orbital defects are less common, yet it is 
in these challenging cases where correct automatic skull patch recon
struction or implant design can have the largest impact on clinical 
practice. It is therefore desirable to design a method that will be able to 
leverage both types of cranioplasty data. 

The main contributions of this article are the following:  

● A multi-branch CNN architecture is proposed as an extension to the 
cascaded CNN used for skull reconstruction in our previous work. 

The architecture allows for training on both synthetic and clinical 
data samples.  

● The proposed CNN model is evaluated on a large dataset of real 
defective skulls with expert-designed implants for the first time. The 
positive effect of the proposed method on reconstruction perfor
mance is demonstrated.  

● A novel metric based on Gaussian curvature is implemented to 
quantify surface imperfections along the defect border. 

2. Materials and methods 

2.1. Datasets 

We use two different cranioplasty datasets in this work. The Skull
break dataset [18] is a synthetic skull shape reconstruction dataset 
adapted from the CQ500 public database of head CT scans [17]. The CT 
scans were rigidly aligned and segmented to provide normalized shapes 
of healthy skulls. Then, synthetic defects were created by subtracting 
random shapes from several regions in each skull. Morphological op
erations were additionally used to mimic some degree of bone healing 
processes along the defect borders. The dataset contains 570 training 
and 100 testing pairs of defective skulls and corresponding skull patches. 

The second in-house dataset was provided by TESCAN Medical 
company. It contains a total of 387 real patient cases indicated for cra
nioplasty. Each patient case consists of CT data with manual skull seg
mentation and a mesh model corresponding to an expert-designed 
cranial implant. 75 of these cases additionally contain expert-designed 
mesh models of patches covering the full area of the defects that were 
used as an initial template for the final implant design by an expert. 
Although these expert-designed patches have a different thickness from 
the original bone, their outer surface can be used as a reference for the 
outer surface of automatically reconstructed patches. This naturally led 
us to split the in-house dataset correspondingly into 312 training cases 
and 75 test cases, ensuring that a real clinical test set of reasonable size is 
available for the evaluation of both the skull patch shape estimation and 
the final implant shape estimation tasks. All implant and patch mesh 

Fig. 1. The proposed multi-branch architecture makes use of multi-task learning on different skull reconstruction datasets. In addition to the higher overall accuracy 
and ability to directly output cranial implant shapes, the skull patch output of the multi-branch model also better fits the shape to complex defect borders in real 
clinical data. 
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models in the clinical in-house dataset were rasterized into voxel grids 
and the data were rigidly aligned to conform with the Skullbreak data. 
Several examples from all datasets can be seen in Fig. 2. 

The two datasets also differ in several more aspects. Because they 
come from geographically distant sources, the average size and the 
anatomical variability of the skulls differ [19,20]. The scale and posi
tional variability of the defects are also different. While the Skullbreak 
dataset was created specifically to contain a balanced amount of uni
lateral, bilateral, and fronto-orbital defects, the clinical in-house dataset 
contains a higher amount of unilateral defects with a larger size and 
reaching farther into lower parts of temporal and sphenoid bones. 
Although some of these differences could be addressed by tailoring the 
synthetic defects in the Skullbreak dataset to fit the distribution of 
clinical data more closely, some aspects such as skull shape variation 
and defect border complexity cannot be precisely emulated. 

2.2. Baseline CNN models for shape estimation 

We use the same baseline reconstruction method for both the skull 
patch estimation and the implant estimation tasks, with the only dif
ference being the data used for training. The method is based on a 
cascade of two U-net-like volumetric CNNs proposed in our previous 
work [4]. The first, coarse CNN g(⋅) with weights θg takes a binary shape 
of defective skull in coarse resolution, denoted xcoarse, and produces an 
initial output shape estimate with the same resolution ycoarse: 

ycoarse = g(xcoarse; θg) (1) 

The second, high-resolution CNN f(⋅) with weights θf then takes a 
single crop of the upscaled coarse shape estimate ycoarse and a corre
sponding crop of the high-resolution defective skull xhigh− res and pro
duces a high-resolution shape estimate yhigh− res of that crop, effectively 
performing super-resolution of the coarse shape estimate locally 
conditioned on the high-resolution defective skull: 

yhigh− res = f (ycoarse, xhigh− res; θf ) (2) 

The coarse CNN model additionally uses a mirrored copy of the input 
volume, which has been shown to improve lateral symmetry of output 
shapes [4]. 

We use 12 initial feature channels and an input volume size of 128 ×
128 × 128 for both the coarse and high-resolution CNNs. The final 
output is created by first inferring the coarse shape estimate and then 
inferring the high-resolution CNN in a sliding window manner. Both the 
original input and the final high-resolution output volumes have size 
512 × 512 × 512 voxels with a resolution of 0.4 mm per voxel. We train 
the CNN cascade for 300 000 steps on mini-batches of size 4 using the 
soft Dice loss [21]. Each training step consists of updating the weights θg 
using the loss computed on coarse resolution and then updating both 
weights θg and θf using the loss computed on random high-resolution 
crops. More details about the CNN architecture and training procedure 
can be found in the original work [4]. 

2.3. Multi-branch CNN model for joint shapes estimation 

To facilitate training of the CNN cascade using both the synthetic 

skull patch dataset and the clinical implant dataset simultaneously, we 
split the outputs of the model into a separate skull patch estimation 
branch and implant estimation branch at both coarse and high resolu
tion. The shape estimation branches are formed by a single conv-ReLU- 
conv-softmax block with the convolutional layers having the same 
number of features as the last layer of the U-net backbone. We denote 
the weights of the U-net backbone θB, the weights of the skull patch 
estimation branch θSP, and the weights of the implant estimation branch 
θI. The outputs of the coarse CNN in the multi-branch model are given as 

ySP
coarse = g(xcoarse; θB

g , θ
SP
g ) (3)  

yI
coarse = g(xcoarse; θB

g , θ
I
g), (4)  

where ySP
coarse denotes the coarse shape estimate of the skull patch and 

yI
coarse denotes the coarse shape estimate of the implant. These two coarse 

shape estimates are then both used as an input into the high-resolution 
CNN, along with the high-resolution shape of the input skull. For the 
high-resolution CNN, the outputs are given as 

ySP
high− res = f (xhigh− res, ySP

coarse, yI
coarse; θ

B
f , θ

SP
f ) (5)  

yI
high− res = f (xhigh− res, ySP

coarse, yI
coarse; θ

B
f , θ

I
f ) (6) 

Such architecture ensures that although two slightly different types 
of shape outputs can be produced by the model at both resolutions, the 
shared U-net backbone is forced to learn to extract meaningful local 
features that are suitable for correct shape estimation on both datasets. 

During the training of the multi-branch CNN cascade, we use mixed 
mini-batches containing two samples from the Skullbreak dataset and 
two samples from the in-house dataset. Accordingly, two loss compo
nents are computed at each step: one for the skull patch estimation 
branch output ySP using the Skullbreak samples, and one for the implant 
estimation branch output yI using the in-house dataset samples. These 
loss components are then added together before updating the respective 
CNN weights. The iterative training of coarse and high-resolution model 
weights is otherwise the same as in the baseline method described in 
Section 2 and the multi-branch model overview is shown in Fig. 3. 

2.4. Metrics 

For the sake of the quantitative evaluation, we assume that the 
expert-designed shapes in the test set represent the only correct solution 
to the shape estimation tasks. This means that the quality of the output 
can be quantified using segmentation metrics such as volumetric over
laps (i.e. Dice coefficient) and surface distance [22]. However, it should 
be noted that the shape reconstruction task is specific in allowing some 
variability in the reconstructed shape in some cases, as long as there are 
no imperfections along the fit of the reconstructed shape to the input 
shape. See Appendix A for an illustration of how different segmentation 
metrics correlate with a subjective quality score of an expert implant 
designer. For these reasons, we evaluate the automatic reconstruction 
outputs using multiple different metrics in this work. 

In the case of implant shape evaluation, we use the Dice coefficient 
and average surface distance for quantification of the estimated implant 

Fig. 2. Axial slices through samples from the datasets used in this work. From left to right: skull patch sample from a synthetic dataset, manually designed implant 
shape sample from an in-house clinical dataset, manually designed skull patch surface sample from an in-house clinical dataset. 
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shape quality, similarly to recent relevant works [12,23,6]. In the case of 
skull patch shape evaluation, however, the expert-designed ground truth 
patches and model outputs have different characteristics and this pre
vents us from using these metrics directly (see Fig. 2). Because the 
thickness of the ground-truth patch is different from the thickness of the 
original bone in the Skullbreak dataset, we measure average surface 
error only at the outer surface voxels of the skull. 

We pay special attention to the quality of fit along the defect border 
of the skull patches. Similar to other authors [12], we report the outer 
surface distance computed along the defect border. However, this metric 
may not precisely convey some types of common errors of skull recon
struction which have an impact on the aesthetic outcome of cranio
plasty, such as slight trenches or bumps on the surface along the defect 
border. To this end, we compare approximate Gaussian curvatures of 
reconstructed skulls and reference skulls along the defect border to 
supply this information. 

Gaussian curvature is routinely used in 3D model surface analysis 
literature [24]. For simplification, we chose to approximate the 
Gaussian curvature error of the reconstructed skull shapes by first 
smoothing the binary images of skull shapes with a Gaussian blur with σ 
= 5, then normalizing back to a range between 0 and 1 and computing 
the Gaussian curvature Ki at each voxel i using the following equation: 

Ki = −

||
H(Fi) ∇FT

i

∇Fi 0
|∇Fi|

4 (7)  

where F is the blurred volume containing the skull, ∇Fi is the vector of 
the first-order spatial differences in voxel i and H(Fi) is the square matrix 
of the second-order spatial differences in voxel i [25]. The resulting 
Gaussian curvature volumes are then compared directly by computing 
voxel-wise squared error and we report the mean of this error computed 

along the defect border voxels as 

MSEK =
1

NB

∑

i∈B
(Kref

i − Kpred
i )

2 (8)  

where B is the set of outer border voxels of the predicted patch and NB is 
their count. Although the exact result of this method is partially 
dependent on voxel resolution, value σ and on the absolute distance 
between the reconstructed and the reference skull surfaces, it eliminates 
the need for finding exact vertex correspondences and our experiments 
show that high resulting values correspond to dented or uneven parts of 
the surfaces. 

3. Results 

The baseline implant model was trained using the 312 training 
implant shapes from the in-house dataset and the baseline skull patch 
model was trained using the 570 Skullbreak training data samples. 
Because we noticed that the average size of the Skullbreak skulls differs 
from the average size of the in-house test skulls, we trained another 
baseline skull patch model on a modified version of the Skullbreak 
dataset that was rescaled to match the average height, length, and 
breadth of the in-house skulls. The multi-branch model was trained 
using a combination of the in-house and the rescaled Skullbreak dataset. 
Outputs of all models were morphologically denoised by removing 
smaller connected components and shape artifacts [26] before 
comparing them to the reference expert-designed shapes in the in-house 
test set. All models were implemented in Python programming language 
using the PyTorch1 framework and the results were rendered using the 

Fig. 3. Illustration of the multi-branch CNN cascade training process. Inputs and outputs of the network in light and dark green colors, respectively, and ground-truth 
shapes in blue. In each training step, the coarse network weights are first updated using the sum of the coarse losses, and then both coarse and high-resolution 
network weights are updated using the sum of the high-resolution losses. 

1 https://pytorch.org. 
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Visualization Toolkit.2 

3.1. Implant shape estimation performance 

The implant shapes produced by the baseline implant model reached 
an average Dice coefficient of 0.85 ± 0.10 and average surface error of 
0.77 ± 0.44 mm, confirming that it is possible to learn the direct map
ping of defective skull shapes to the final cranial implant shapes using 
the CNN cascade. However, because central and fronto-orbital defects 
are not well represented in the in-house training dataset, the baseline 
implant model fails to correctly estimate implant shapes in these cases, 
as shown in Fig. 4. This issue may be amplified by the fact that the coarse 
CNN model learns to rely too much on the mirrored input to provide 
initial information about the missing shape, leading to overfitting and an 
inability to correctly deal with bilateral defects. 

The implant estimates of the multi-branch model reached an average 
Dice coefficient of 0.88 ± 0.07 and an average surface error of 0.65 ±
0.33 mm, showing an increase in accuracy and decreased variability of 
output shape quality. Closer inspection of the outputs reveals an 
increased success rate of bilateral and fronto-orbital implant shape 
estimation. This can be attributed to better generalization of the U-net 
backbone which needs to account for more diverse defect positions in 
the Skullbreak dataset. Several example implant shape estimates from 
both the baseline implant model and the multi-head model implant 
estimation branch are shown in Fig. 4. The distribution of Dice co
efficients and average surface distances achieved by both models can be 
found in Fig. 7 (top). 

3.2. Skull patch estimation performance 

The skull patches produced by the baseline skull patch model trained 
on the original Skullbreak data resulted in an average outer surface error 
of 0.98 ± 0.45 mm on the in-house test set. Rescaling the Skullbreak 
training skulls to match the average size of the in-house skulls decreased 
the error by 15% to 0.83 ± 0.38 mm, supporting the hypotheses that the 
model learns the average skull shape of the training data. However, the 
skull patch estimates still produced shapes with a high surface error and 
occasional artifacts such as holes and uneven surfaces, especially in 
cases of large defects. One of the causes may be the fact that the defects 
in the Skullbreak dataset do not fully cover the lower areas of the skull. 
This could be addressed by extending the dataset with additional syn
thetic defects, but Figs. 5 and 6 show that there are multiple different 
sources of error. 

The skull patch estimates produced by the multi-branch CNN model 
further decreased the average surface error to 0.67 ± 0.37 mm. In 
addition to a lower amount of visible holes and artifacts in the estimated 
shapes, the multi-branch model also predicted the skull patches with an 
overall lower outer surface distance from the reference expert-designed 
patches, as shown in Fig. 5. The distributions of all error metrics for the 
three models are shown in Fig. 7 (bottom). 

Interestingly, the multi-branch model output also reached a lower 
defect border surface error of 0.75 mm, compared to 0.96 mm and 0.94 
mm for the baseline models trained on the original and the rescaled 
Skullbreak dataset, respectively. Similarly, the Gaussian curvature er
rors of the baseline skull patch model trained on the original Skullbreak 
and on the rescaled Skullbreak datasets also did not differ significantly, 
but the curvature error decreased by around 12% in the case of the 
multi-branch model skull patch branch outputs. This suggests that the 
multi-branch model learned to better fit the reconstructed skull patches 
to the more complex borders of the in-house defective skulls, despite 
only encountering the corresponding implant shapes with spatial 
tolerance along the border during training (see Fig. 2). Fig. 6 shows how 
the Gaussian curvature error reacts to different types of surface errors 

compared to the distance-based metrics, helping to visually identify 
problematic regions of the skull patch shape reconstruction outputs. 

3.3. Statistical analysis 

We performed a statistical analysis to report the significance of the 
performance gain achieved by the multi-branch CNN. The statistical 
significance levels are shown in Fig. 7. 

A one-sided paired t-test was used to test the hypothesis that the error 
measurements of the multi-branch CNN outputs were significantly lower 
(or higher in the case of Dice coefficient) than in the case of the baseline 
CNN outputs. For the global metrics (i. e. surface distance and Dice 
coefficient), p-value was below the level of 0.05 for both the recon
structed skull patches and implants, which led us to accept the hy
pothesis that combining the data using the multi-branch CNN provides 
better global results when compared to the baseline models which use 
only one type of training data. 

In the case of the border error metrics (i. e. border distance and 
Gaussian curvature error), the hypotheses could not be accepted using t- 
test as the p-values were over 0.05. This is likely because the shape ar
tifacts along the border were often concentrated into a relatively small 
area (see Fig. 6), which resulted in a smaller quantitative difference. 
Therefore, we used a non-parametric Wilcox sign test to test whether the 
proposed approach lowers the border error when compared to the 
baseline methods. The hypothesis was accepted, showing that albeit 
small, the border error reduction is consistent across the test cases. 

4. Discussion and conclusions 

CNN-based skull reconstruction methods are becoming a hot topic in 
medical imaging. One of the major drawbacks in the current research is 
that the reconstruction outputs are most often evaluated on a held-out 
synthetic dataset in which similar anatomical variability and defect 
shape and type distribution can be ensured. One of the goals of this study 
was to illustrate the behavior of CNN-based skull reconstruction models 
trained on an easily accessible synthetic dataset when evaluated on real 
patient data. Our experiments showed that the transfer of the trained 
CNN model to a different population can negatively affect the recon
struction quality. Furthermore, by looking at differences in Gaussian 
curvature, we found that the shape complexity of the defect border in 
real clinical data can cause faults in the smoothness of the resulting 
surface. 

We showed that when training the model on real clinical patient 
data, synthetic data can be effectively leveraged using the proposed 
multi-branch CNN model to significantly improve the model perfor
mance and compensate for common issues of clinical patient datasets (i. 
e. data scarcity and imbalance). Although a similar effect could possibly 
be achieved by collecting a vast amount of well-balanced clinical data, 
or by perfectly matching their distribution by meticulously tailoring 
synthetic data, we believe that the proposed approach of combining a 
large amount of imperfect synthetic data and a limited set of target 
clinical data is generally simpler and easily extendable to different types 
of cranioplasty data, for example, different population, additional defect 
areas such as the orbital floor or zygomatic bone or even different 
preferences for the final implant shape. The error of the outer surface of 
reconstructed skulls achieved by the proposed method is higher than 
some other recent works evaluated on synthetic defects [12,4]. How
ever, we believe that factors such as a higher average area of the defects 
in our test set may be the cause and that the results are overall very 
promising. 

The synthetic and clinical datasets used in this work contained 
different types of ground truths: the original missing skull patch shape 
and final cranial implant shapes. This allowed us to automatically pro
duce 3D printable and directly implantable shapes, although this use 
case will require further evaluation of the clinical applicability in 
cooperation with experienced implant designers. More importantly, the 2 https://vtk.org. 
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Fig. 4. Implant estimates of the baseline implant model (top) and the multi-branch model (bottom).  

Fig. 5. Estimated skull patches of the baseline skull patch model (top) and the multi-branch model (bottom).  

Fig. 6. Three example pairs of baseline skull patch model outputs and multi-branch model skull patch outputs, respectively, with color-coded Gaussian curvature 
error. The 3D models were rendered using the marching cubes algorithm and post-processed using quadratic decimation and normal smoothing. The multi-branch 
model can produce smoother results with lower curvature error. Note that we show the entire Gaussian curvature error maps for illustration while only defect border 
voxels are taken into account when computing the mean errors. 
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general ability of the model to combine cranioplasty data from different 
sources and of different types can accelerate the adoption of the auto
matic reconstruction methods by allowing training on specific target 
datasets while exploiting the advantages of available synthetic datasets. 

To our best knowledge, this was the first study that evaluated CNN- 
based skull reconstruction on a real clinical dataset of this size. The 
proposed multi-branch CNN cascade increased the reconstructed shape 
quality by allowing training on more data when compared to the indi
vidual baseline models. Although the results of this study are promising 
from a quantitative perspective, they will need to be evaluated next by 
an experienced implant designer to ascertain their clinical value. 
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Appendix A. Correlation Analysis of Quantitative Metrics and Subjective Expert Score of Automatic Skull Reconstructions 

This section illustrates how well the quantitative segmentation metrics can predict the usability of automatic skull reconstruction results in clinical 
practice. We created a dataset of automatically reconstructed defective skulls and submitted it to an expert with experience in the field of skull 
reconstruction and implant design for subjective quality evaluation. Comparing these subjective expert scores with metrics of similarity between the 
reconstructed and the original shape can give an idea of what to look for when evaluating the reconstructions. 

A.1 Skull Data and Reconstruction 

The skull data come from the SkullBreak and SkullFix datasets [18], so the ground truth original shapes are available. A CNN-based reconstruction 
of the missing shape [4] was performed on each skull. Because we would ideally want to cover for this analysis the whole quality spectrum from bad 
reconstructions to very good reconstructions, we included the following types of reconstructed cases:  

● SkullFix test case reconstructions  
● SkullFix additional test case reconstructions  
● SkullBreak test case reconstructions  
● SkullBreak training case reconstructions (to include several close-to-perfect reconstructions)  
● SkullBreak test case reconstructions using generative model [4] (to include multiple different reconstructions for a single case, including visibly 

bad ones) 

This resulted in a total of 35 skulls. The expert assigned a score on a scale from zero to ten to each of the reconstructions, where zero corresponded 
to unacceptable reconstruction and ten to a nearly perfect result. 

A.2 Global Metrics 

We first computed correlation coefficients between the subjective expert score and routinely used segmentation metrics, including volumetric Dice 
coefficient and average symmetric surface distance. We also included the surface distance computed at the outer surface of the skull, since it is the most 
important aspect for subsequent implant modeling steps [27]. The outer surface was used in the evaluation of some previous works [12] and also in 
this work because of the shape characteristics of in-house ground truth data.

Fig. 8. Plots of the three global quantitative metrics plotted against the corresponding expert subjective score. Note that in some cases (highlighted by red arrows), 
the metrics failed to estimate the practical usability of the reconstruction result. 

Figure 8 shows that these global metrics correlate with the expert subjective score with correlation coefficients around 0.6, confirming that they are 
appropriate for the comparison of different reconstruction methods. However, it can be noted that their correlation is weak when the subjective expert 
score is high, making it impossible to use them for discrimination between good and perfect results. Also, several cases satisfy the quantitative metrics 
while being seen as low-quality by experts and vice versa (see cases highlighted in red in Fig. 8). 

A.3 Defect Border Metrics 

The smoothness of the surface closest to the defect border has a significant impact on the aesthetic outcome of cranioplasty. We study two metrics 
that focus on this area: outer surface distance of the defect border and mean square error of Gaussian curvature. The defect border is defined as a set of 
outer surface voxels of the reconstructed skull patch shape in direct contact with the defective skull. 
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Fig. 9. Plots of border Gaussian curvature error (left) and border surface distance (right) plotted against the corresponding expert subjective score. The same cases 
are highlighted as in the case of global metrics, showing that the border metrics convey different yet relevant information about the reconstruction result. 

Figure 9 shows that both of these metrics correlate with the subjective expert score similarly or slightly more than the global metrics. Most 
importantly, it can be seen that the border metrics indeed convey different information. Although the quantitative border metrics do not always agree 
with the subjective quality score, the correlation with the expert score was higher in the cases where the correlation of the global metrics was low. 

This study was performed using only one type of automatic reconstruction method and the results were evaluated by a single implant design expert, 
which leaves much room for more extensive studies. However, it can be concluded that to best gauge the quality of results of automatic skull 
reconstruction, different types of quantitative metrics should be combined together, and both global and border metrics should be taken into account. 
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