
On Testability Analysis Driven Generation                                             
of Synthetic Register-Transfer Level Benchmark Circuits 

 
Josef Strnadel1, Tomáš Pečenka1, Lukáš Sekanina1 

1Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic 
strnadel@fit.vutbr.cz, pecenka@fit.vutbr.cz, sekanina@fit.vutbr.cz 

Abstract. Use of benchmark designs has become an important part of a process of 
designing complex systems. However, existing register-transfer level benchmark suites 
are not sufficient for evaluation of new architectures and tools; synthetic benchmark 
circuits are an alternative. In the paper, it is demonstrated how evolutionary techniques 
can be used to generate synthetic benchmarks covering a wide scale of testability 
properties. The generation process is driven by a register-transfer level testability analysis 
method and generated benchmarks are stored in synthesizable VHDL source-code. 
Results gained by proposed method together with future research trends are discussed at 
the end of the paper. 
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I. Introduction 

One of the most difficult tasks CAD users face is the evaluation and comparison of different 
tools and algorithms. The efficiency of critical algorithms must be measured and compared to 
understand both tool behavior and progress over time. The evaluation and comparison of new 
technologies, architectures and electronic design automation (EDA) tools can be done using so-called 
benchmark circuits (benchmarks). A benchmark set (suite) is a set of benchmarks that (in the ideal 
case) is representative for the circuit space, or at least that part at which particular EDA tool is aimed. 
The type of description of a benchmark and its level of abstraction depend on the application. E.g., the 
evaluation of high-level synthesis algorithms requires high-level behavioral circuit descriptions, while 
routing algorithms can only be tested with low-level physical descriptions. Many initiatives dealing 
with benchmarks exist. Benchmark suites for following areas are available in [2]: gate-level test 
generation (ISCAS8x), high-level synthesis (HLSynth89, HLSynth9x), logic synthesis (LGSynth89, 
LGSynth9x), physical implementation (LayoutSynth9x, PDWorkshop9x etc.), circuit simulation 
(CircuitSim90), partitioning (Partitioning93) etc. However–existing benchmark suites are insufficient, 
since they usually consist of too few and too small circuits and they usually are not very representative 
for all circuit classes, e.g., for diagnostics purposes. Also, because of the proprietary nature of 
industrial circuits, it is almost impossible to compile sufficiently large benchmark sets of sufficiently 
large real-circuits. Recently, the generation of synthetic benchmarks is seen as a viable alternative–see, 
e.g., [4, 5, 7]. Major advantage of synthetic benchmarks is they provide full control over important 
characteristics, such as size, topological, diagnostic or functional parameters of particular circuit. For 
each circuit class, different parameters are important in general. 

II. Problem Definition and Our Research Goals 

As mentioned above, the “benchmark set construction” problem is to compile sufficiently large 
sets of sufficiently large benchmarks with desired properties. Our research has been focused on 
solving the problem in the area of register-transfer level (RTL) circuits. 



Our main research goal in the area was to use our previously developed structural-analysis based RTL 
testability analysis method for finding the worst testable RTL design from given RTL design state-
space. Our hypothesis is the worst testable design is the design that is highly suitable to be 
included in a “RTL diagnosis benchmark set”. Thus, our goal was to develop an efficient method 
that would be able to explore the state-space and to find proper candidates to be included in the set. 

III. Proposed Benchmark Generation Method 

During our research, novel method utilizing an evolutionary genetic algorithm (GA) to create RTL 
benchmarks automatically according to user-specified requirements was developed. To be able to 
compare quality of two different solutions from a diagnostics point of view, a fitness function was 
developed. It evaluates particular solution by a real number according to its RTL testability results.  

A. Inputs of the Method 
As an input of proposed method, the user is supposed to specify following data: number of circuit 
primary inputs and outputs, number and type of in-circuit components, testability requirements 
(controllable and observable nodes ratios: sets with various diagnostics parameters could be needed; in 
our case, both ratios should be set to their worst values, e.g., to 0.0) and GA parameters. Following 
XML code is an example of a user-entered data stored in an input file: 
 
<circuit> 

<testability con_ratio="0.0" obs_ratio="0.0"/> 
<evolution population="30" replacement="1.0" crossover="0.0" mutation="1.0" steps="10"/> 

  <primary inputs="24" outputs="16"/> 
   <comp type="SUB_A" width="8" quantity="20"/> 
   <comp type ="ADD_B" width="16" quantity="11"/> 
   <comp type ="MUL_A" width="8,16" quantity="8"/> 
   <comp type ="MUX_2" width="8" quantity="13"/> 
</circuit> 

B. Circuit Representation 
Each circuit is seen as a graph represented by an integer array (see Fig 1). GA operates over such 
arrays. In the representation, registers are not taken into account; they are post-inserted into the circuit 
structure before the testability analysis and synthesis are started. Each input and output belonging to 
the circuit structure is assigned a unique number. Because a component input can be connected to at 
most one output, the circuit can be represented by means of an array, in which the index is the input 
number and the value identifies the output connected to the input. Primary inputs are treated as outputs 
and primary outputs are treated as inputs of a component connected to a test-bench circuit.  
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Fig 1 Circuit encoding in a chromosome          Fig 2 Illustration of used approaches to mutation 



C. Principle of the Method 
Evolutionary algorithms have become a successful design method. User has to specify requirements 
posed on desired-solution properties (circuit structure properties in our case) in the fitness function. 
Then, the evolutionary algorithm tries to meet the requirements by means of components that are 
available beforehand and using a population-based search (e.g., [1, 3]). However, no approach is 
known for evolutionary design of benchmark circuits. In our approach, simple GA operating with the 
representation introduced in the previous section was utilized. Initial population consisting of P 
individuals (candidate circuits) is generated randomly. New populations are formed using roulette 
wheel selection and mutation operator, n weakest individuals are replaced by mutated parents. Elitism 
is used and evolution runs for a given number of generations. The fittest individual is considered as 
the result and it is transformed to VHDL. During the evolution, only inter-connections are mutated. 
Used mutation principles can be summarized as follows (for illustration, see Fig 2): the input of a 
component on which the mutation operator will be applied is randomly selected. If the output 
connected to the input is connected to other input(s), then the selected input is reconnected to a 
randomly selected output of other component or to a primary input (see Fig 2a). In case an output of a 
component would become disconnected after the mutation, the output must be connected to a 
randomly selected input as illustrated in Fig 2b. The mutation respects the circuit data-path width. To 
be able to compare individuals belonging to P, fitness function is used that assigns a numeric value to 
each individual within P. Alike the mutation the fitness function is a crucial part of a GA since it 
substantially affects quality of evolved solutions (RTL benchmarks in our case). The fitness function 
(see formula 1), which has to be maximized here, combines three objectives x1, x2 and x3. x1 (x2) 
characterize interconnectivity (variability) of in-circuit components, x3 is calculated using tool based 
on method [6] and reflects the result of comparing circuit testability with user testability requirements 
posed on resulting circuit. Experimentally found weight system c1=0,3, c2=0,2 and c3=0,5 is used. 

                                                   332211 cxcxcxfitness ++=                                              (1) 

IV. Experimental Results 

We have performed hundreds runs of proposed GA in order to find suitable parameters of the 
algorithm. We arranged a set of experiments to evaluate the proposed approach. From all experiments, 
let us mention results only of two of them in the next. 

Experimenting with evolvability of generated circuits: the objective of this task was to observe how 
the average fitness value (gained from 20 (30) runs) increases during the evolution, i.e. how the best 
solution is evolved during time. This experiment was performed for a small circuit (12 in-circuit 
components, 20 runs) and a large circuit (250 in-circuit components, 30 runs). 
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Fig 3 Evolution of a 12-component circuit (a) and a 250-component (b) circuit 

Experimenting with meeting user requirements: the objective of this task was to check how 
observability and controllability of evolved benchmarks differ from values required by the user. The 
same experimental setup as in the previous section was used. 
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Fig 4 The differences of required and obtained controllability and observability values                             
for 20 evolved 12-component circuits (a) and 30 evolved 250-component circuits (b) 

V. Conclusions 

In the area of RTL benchmark circuits, there is a long-term need for larger sets of more complex 
benchmark circuits having desired diagnostics, structural and other properties. In our research we have 
verified that a set of RTL benchmark circuits can be evolved in an efficient way on basis of GA using 
testability analysis results for fitness calculation. Proposed benchmark generation method takes into 
account user-selected number of inputs and outputs, amount of in-circuit components of chosen types 
and testability requirements posed on a final circuit design; the function performed by the circuit is not 
considered yet. For the nearest future, we intend to develop and implement a method, which will 
evolve benchmark circuits fulfilling required function and still having desired testability properties. It 
is expected that the process of generating benchmark circuits in this direction will be significantly 
more complicated. We shall not also neglect the possibility of integrating proposed algorithms into 
existing design systems and thus offer the possibility of developing components fulfilling the required 
function and providing guaranteed and predefined testability properties. It is believed that utilizing 
evolutionary approaches will offer completely new solution to this problem. The work related to the 
paper was financially supported by the Grant Agency of the Czech Republic (GACR) under contract 
number GA102/05/P193 "Optimizing Methods in Digital Systems Diagnosis". 
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