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1 Introduction

Embedded development platform µG4-150 (aka micro for gigabit) is an FPGA-
based board developed for wire-speed acceleration and/or processing of network
packets up to 1 Gbps. It consists of a powerful Xilinx Spartan-6 FGPA of the
biggest size and speedgrade, so it can be also used as an experimental platform.

Obrázek 1. Overall concept of the embedded development platform µG4-150.
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Platform uses four ports for network connectivity, DDR-type memories as a
fast local data storage or a system RAM for softprocessor, a 16 MB boot �ash
for FPGA device which can be also used as a slow persistent local data sto-
rage, a slot for micro-SD memory cards, a powerful USB 3.0 interface for high
performance transfers to a computer or an attached storage device (USB �ash
disc, etc.), a serial (UART) interface, a standard JTAG connector used mainly
for easy debugging. It also consist of signalization LEDs and GPIO to interface
other components not included on the platform. All these components are con-
nected to the FPGA. Finally, it also consists of other components not speci�ed in
too much detail within this document (i.e. power components, crystals, passive
components, etc.) but very important for the proper function. Overall concept
of the embedded development platform µG4-150 is shown on the Fig. 1. Whole
platform is shown on the Fig. 2 (front side) and on the Fig. 3 (back side).

Obrázek 2. Embedded development platform µG4-150 (front side).

Obrázek 3. Embedded development platform µG4-150 (back side).
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2 Power supply

The µG4-150 platform is expected to be powered by 12 V with maximum current
of 1 A. Two connectors can be used for attaching power supply: the power
jack and the standard ribbon cable connector (both are shown on the Fig. 4).
There is no possibility to use both power supply connectors simultaneously as
this situation may lead to the electrical short! Separate power switch with two
positions (also shown on the Fig. 4) can be used for switching on and o�.

Obrázek 4. A - Jack connector, B - Ribbon connector, C - Power switch.

There are several power supply components (suppliers) on the platform:
one 5V@5A, two 3.3V@1A, one 2.5@3A, one 1.5V@3A, one 1.2V@4A and one
0.75V@3A. 5 V and both 3.3 V suppliers are fed from 12 V input. 2.5 V, 1.5 V
and 1.2 V suppliers are then fed from 5 V supplier. The last supplier for deriving
0.75 V is fed from 1.5 V supplier as shown in Table 1.

Supplier for [V] Max. current [A] Fed from Used for

5 5 direct 12 V input Deriving other voltage levels, USB 3.0

3.3 1 direct 12 V input Ethernet

3.3 1 direct 12 V input FPGA, boot �ash, SD card

2.5 3 5 V supply USB 3.0 , FPGA, debugging LEDs

1.5 3 5 V supply DDR memory , FPGA

1.2 4 5 V supply USB 3.0 , FPGA, Ethernet

0.75 3 1.5 V supply DDR memory

Tabulka 1. Di�erent power supply components on the platform.
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3 Spartan-6 FPGA

The FPGA is a Xilinx Spartan-6 of the biggest size and speedgrade from the
LX family (XC6SLX150-3). This one has 147,443 logic cells, 23,038 slices (each
Spartan-6 FPGA slice contains four LUTs and eight �ip-�ops), 184,304 Flip-
Flops, can be con�gured for up to 1,355 kb of distributed RAM, has 180 DSP48A1
blocks and 268 of 16 kb BlockRAMs (max. 4 824 kb of memory). It also con-
sists of 6 Clock Management Tiles (CMTs) each with two DCMs and one PLL,
up to four Memory Controller Blocks (MCBs) and up to 576 user I/Os. As the
µG4-150 platform is equipped with FPGA in the FG484C package, so that there
are two MCBs and only 338 user I/Os available. Some other details can be found
in the Spartan-6 product speci�cation [10] or Spartan-6 FPGA Packaging and
Pinouts product speci�cation [13].

3.1 Clock distribution

There is only one clock source for the FPGA on the µG4-150 platform. It is a
clock oscillator with a frequency of 25.0 MHz connected to the Y11 pin. More
details about this component can be found in its corresponding datasheet [?]. For
proper function of FPGA �rmware Xilinx uni�ed constraints �le (UCF) should
contain (clock input is denoted as "CLK_IN" and assuming IOSTANDARD is
implicitly "LVCMOS25"):

NET "CLK_IN" LOC = Y11;

NET "CLK_IN" TNM_NET = "CLK_IN1";

TIMESPEC "TS_CLK_IN1" = PERIOD "CLK_IN1" 40 ns HIGH 50

INPUT_JITTER 300.0ps;

Other FPGA clock frequencies can be derived internally from DCMs or PLLs
components. If it is desired, other platform components have their own clock
sources. Such an example is the USB 3.0 processor with 19.2 MHz crystal or all
Ethernet transceivers each with separate 25.0 MHz crystal. These clock sources
are not available for use in the FPGA.

3.2 Booting subsystem

FPGA can be con�gured via JTAG interface shown on the Fig. 5.
The Spartan-6 FPGA device is the only device in this JTAG chain. Plat-

form uses high-capacity on-board 128 Mb serial �ash memory from Winbond
(W25Q128BV) [1]. This memory can be accessed only via FPGA pins and its
interconnection is shown on this UCF example (assuming IOSTANDARD is im-
plicitly "LVCMOS25"):

NET "CFG_D[0]" LOC = AB20;

NET "CFG_D[1]" LOC = AA20;

NET "CFG_D[2]" LOC = U14;
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Obrázek 5. A - JTAG connector, B - Flash memory, C - Push button.

NET "CFG_D[3]" LOC = U13;

NET "CFG_CS_N" LOC = T5;

NET "CFG_CLK" LOC = Y21;

Signal CFG_D(0) is equivalent with �ash DI/IO0, signal CFG_D(1) is equi-
valent with DO/IO1, signal CFG_D(2) with WP/IO2 and last signal CFG_D(3)
with HLD/IO3 pin. The Xilinx Impact tool can be used for proper loading of
FPGA bitstreams or other stu� to this �ash for the �rst time (or processor in
FPGA can access it). FPGA boot option is hard wired to master SPI [11] (M0
= 1, M1 = 0) and it enables multi-boot or golden design support with this serial
�ash [8]. In FPGA boot time, interface can utilize up to 26 MHz speed operation
(limitation on FPGA side) and up to 4 data bits. Di�erent FPGA boot time can
be achieved with di�erent con�guration as shown in Table 2 (in seconds). All
con�guration values in Table 2 are possible with the Xilinx Impact tool.

Bit width/Frequency 2 MHz 4 MHz 6 MHz 10 MHz 12 MHz 16 MHz 22 MHz 26 MHz

1 16.8808 8.4404 5.6269 3.3761 2.8135 2.1101 1.5346 1.2985

2 8.4404 4.2202 2.8135 1.6880 1.4067 1.0550 0.7673 0.6492

3 4.2202 2.1101 1.4067 0.8440 0.7034 0.5275 0.3837 0.3246

Tabulka 2. FPGA boot time (in seconds) from on-board �ash memory for di�erent
con�gurations.

The µG4-150 platform has been successfully tested with maximum operation
speed therefore the con�guration time of 324,6 ms can be easily achieved with
normal, uncompressed bitstream. As the FPGA (uncompressed) bitstream size
is 33,761,696 bits [11], performance of 104 Mbps on the �ash memory interface
is achieved. Push button shown on the Fig. 5 can be used to reload bitstream
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stored in �ash memory at any time. LED signalisation is used for informing
about successful FPGA bitstream loading (see LED indicators section).

3.3 DDR3 memory subsystem

The µG4-150 platform contains of two (DDR3A and DDR3B) 256 MB DDR3
type memories from Micron (type MT41J256M8HX) [6] shown on the Fig. 6.

Obrázek 6. A - First DDR3 memory, B - Second DDR3 memory, C - FPGA.

Both memories are connected to separate Memory Controller Block (MCB)
in the Spartan-6 FPGA [9] so port mapping is given. UCF example for both
memories follows:

NET "DDR3A_RZQ" LOC = R22 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_ZIO" LOC = C19 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_WE" LOC = H19 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_RAS" LOC = H21 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;
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NET "DDR3A_CAS" LOC = H22 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_CK_P" LOC = H20 | IOSTANDARD = DIFF_SSTL15_II |

OUT_TERM = UNTUNED_50;

NET "DDR3A_CK_N" LOC = J19 | IOSTANDARD = DIFF_SSTL15_II |

OUT_TERM = UNTUNED_50;

NET "DDR3A_CKE" LOC = D21 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_RST" LOC = F18 | IOSTANDARD = SSTL15_II | TIG;

NET "DDR3A_A[0]" LOC = F21 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[1]" LOC = F22 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[2]" LOC = E22 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[3]" LOC = G20 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[4]" LOC = F20 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[5]" LOC = K20 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[6]" LOC = K19 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[7]" LOC = E20 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[8]" LOC = C20 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[9]" LOC = C22 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[10]" LOC = G19 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[11]" LOC = F19 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[12]" LOC = D22 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[13]" LOC = D19 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_A[14]" LOC = D20 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_BA[0]" LOC = J17 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_BA[1]" LOC = K17 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_BA[2]" LOC = H18 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3A_DQ[0]" LOC = N20 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3A_DQ[1]" LOC = N22 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3A_DQ[2]" LOC = M21 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3A_DQ[3]" LOC = M22 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3A_DQ[4]" LOC = J20 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3A_DQ[5]" LOC = J22 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3A_DQ[6]" LOC = K21 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3A_DQ[7]" LOC = K22 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3A_LDM" LOC = L19 | IOSTANDARD = SSTL15_II |

OUT_TERM = UNTUNED_50;
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NET "DDR3A_DQS_P" LOC = L20 | IOSTANDARD = DIFF_SSTL15_II |

IN_TERM = NONE | OUT_TERM = UNTUNED_50;

NET "DDR3A_DQS_N" LOC = L22 | IOSTANDARD = DIFF_SSTL15_II |

IN_TERM = NONE | OUT_TERM = UNTUNED_50;

NET "DDR3A_ODT" LOC = G22 | IOSTANDARD = SSTL15_II |

OUT_TERM = UNTUNED_50;

NET "DDR3B_RZQ" LOC = P1 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_ZIO" LOC = Y2 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_WE" LOC = F2 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_RAS" LOC = K5 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_CAS" LOC = K4 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_CK_P" LOC = H4 | IOSTANDARD = DIFF_SSTL15_II |

OUT_TERM = UNTUNED_50;

NET "DDR3B_CK_N" LOC = H3 | IOSTANDARD = DIFF_SSTL15_II |

OUT_TERM = UNTUNED_50;

NET "DDR3B_CKE" LOC = D2 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_RST" LOC = C3 | IOSTANDARD = SSTL15_II | TIG;

NET "DDR3B_A[0]" LOC = H2 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[1]" LOC = H1 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[2]" LOC = H5 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[3]" LOC = K6 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[4]" LOC = F3 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[5]" LOC = K3 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[6]" LOC = J4 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[7]" LOC = H6 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[8]" LOC = E3 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[9]" LOC = E1 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[10]" LOC = G4 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[11]" LOC = C1 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[12]" LOC = D1 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[13]" LOC = G6 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_A[14]" LOC = F5 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_BA[0]" LOC = G3 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_BA[1]" LOC = G1 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_BA[2]" LOC = F1 | IOSTANDARD = SSTL15_II | OUT_TERM = UNTUNED_50;

NET "DDR3B_DQ[0]" LOC = N3 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3B_DQ[1]" LOC = N1 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3B_DQ[2]" LOC = M2 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;
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NET "DDR3B_DQ[3]" LOC = M1 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3B_DQ[4]" LOC = J3 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3B_DQ[5]" LOC = J1 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3B_DQ[6]" LOC = K2 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3B_DQ[7]" LOC = K1 | IOSTANDARD = SSTL15_II | IN_TERM = NONE |

OUT_TERM = UNTUNED_50;

NET "DDR3B_LDM" LOC = L4 | IOSTANDARD = SSTL15_II |

OUT_TERM = UNTUNED_50;

NET "DDR3B_DQS_P" LOC = L3 | IOSTANDARD = DIFF_SSTL15_II |

IN_TERM = NONE | OUT_TERM = UNTUNED_50;

NET "DDR3B_DQS_N" LOC = L1 | IOSTANDARD = DIFF_SSTL15_II |

IN_TERM = NONE | OUT_TERM = UNTUNED_50;

NET "DDR3B_ODT" LOC = J6 | IOSTANDARD = SSTL15_II |

OUT_TERM = UNTUNED_50;

Performance analysis Xilinx Spartan-6 family of FPGAs allows up to 400 MHz
performance on its pins. Using double data rate (DDR) technique, we can achieve
up to 800 Mbps. Memory throughput depends also from two di�erent power mo-
des: normal and extended. Mode of operation specify hard requirements on the
Vccint [12]. In commercial FPGAs (also used on the platform) it is 1.14 V (min)
1.2 V (typ) and 1.26 V (max). Extended mode have requirements of 1.2 V (min)
1.23 V (typ) and 1.26 V (max) and this is achievable on the µG4-150 plat-
form. This also means possibility of use 800 Mbps performance. If Vccint power
requirements are not met, only up to 667 Mbps throughput can be achieved.

Memory throughput is multiplied by the number of physical banks of the
memory (x4, x8, x16, etc.). The µG4-150 platform uses x8 memory, so in theory,
6,400 Mbps should be achievable. On the other side, MCBs have 4 unidirectional
and 2 bidirectional 32-bit wide physical ports [9]. Every port has its own �fo for
64 items. These ports can be con�gured almost soever (di�erent direction and
data wide), but every clock cycle it is decided which physical port will be serviced
by speci�ed priorities. Priorities can be also con�gured so that this arbitration
can a�ect memory performance quite dramatically. The last thing that can a�ect
memory performance is the frequency of user interface for the MCBs. The Xilinx
documentation recommends to use 100 MHz [9].

3.4 Ethernet subsystem

Media access control (MAC) subsystem has to be implemented in FPGA, e.g.
using Xilinx LogiCORE IP Tri-Mode Ethernet MAC [7], for proper Ethernet
operation. It is due to use of Ethernet transceivers (phyters) that are connected
to the FPGA by reduced GMII interface (RGMII). Platform utilizes low power
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single port 10/100/1000 Mbps Micrel KSZ9021RN chip for each Ethernet port
[3] shown on the Fig. 7.

Obrázek 7. A - Phyter A, B - Phyter B, C - Phyter C, D - Phyter D, E - Ethernet
connectors.

By default, these four phyters are con�gured to advertise all capabilities
(10/100/1000 Mbps operation in half or full duplex) during an auto-negotiation
process. Con�guration and/or status exploration of phyters can be done using
shared serial MDC/MDIO bus. For example, it is possible to �gure out re-
sult of auto-negotiation process. The maximum permitted frequency of MDC
is 2.5 MHz. The MDIO format is de�ned in IEEE802.3 clause 22. Each phyter
has its own address on the MDIO bus (PHYA = "001", PHYB = "010", PHYC
= "011"and PHYD = "100").

Moreover, FPGA is also able to separately reset every phyter at any time
using dedicated reset signals. Resetting is also recommended if given phyter is
not in use. Phyters also use dedicated interrupts for di�erent event signalling to
the FPGA. On the other side, phyters are connected to the RJ45 metallic ports
that are equipped with magnetics and with Green and Orange LED signalization.
LEDs states are described in Table 3.

Platform utilizes 4xRJ45 Ethernet connectors (Bel Fuse) for direct phyter
connection. Phyters port mapping to the FPGA can be seen in the following
UCF template (assuming IOSTANDARD is implicitly "LVCMOS25"):

NET "MDC" LOC = C9;

NET "MDIO" LOC = A9;
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Led colour LED De�nition Link / Activity

Green OFF Link o�

Green ON Link on (any speed)

Orange OFF No activity

Orange Blinking Activity (RX or TX)

Tabulka 3. Ethernet LED signalization.

NET "PHY_A_INT_N" LOC = C16 | TIG;

NET "PHY_A_RST_N" LOC = B16 | TIG;

NET "PHY_A_RGMII_TXD[0]" LOC = C13 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_A_RGMII_TXD[1]" LOC = A13 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_A_RGMII_TXD[2]" LOC = D14 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_A_RGMII_TXD[3]" LOC = C14 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_A_RGMII_TX_CTL" LOC = B14 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_A_RGMII_TX_CLK" LOC = A12 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_A_RGMII_RXD[0]" LOC = D15;

NET "PHY_A_RGMII_RXD[1]" LOC = C15;

NET "PHY_A_RGMII_RXD[2]" LOC = A15;

NET "PHY_A_RGMII_RXD[3]" LOC = A14;

NET "PHY_A_RGMII_RX_CTL" LOC = A16;

NET "PHY_A_RGMII_RX_CLK" LOC = B12;

NET "PHY_A_RGMII_RX_CLK" TNM_NET = "PHY_A_RGMII_RX_CLK1";

TIMESPEC "TS_PHY_A_RGMII_RX_CLK1" = PERIOD "PHY_A_RGMII_RX_CLK1"

8 ns HIGH 50%;

NET "PHY_B_INT_N" LOC = F15 | TIG;

NET "PHY_B_RST_N" LOC = H14 | TIG;

NET "PHY_B_RGMII_TXD[0]" LOC = H12 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_B_RGMII_TXD[1]" LOC = F12 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_B_RGMII_TXD[2]" LOC = D12 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_B_RGMII_TXD[3]" LOC = E12 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_B_RGMII_TX_CTL" LOC = D13 | OUT_TERM = "UNTUNED_25" |
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SLEW = FAST;

NET "PHY_B_RGMII_TX_CLK" LOC = C12 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_B_RGMII_RXD[0]" LOC = E14;

NET "PHY_B_RGMII_RXD[1]" LOC = H13;

NET "PHY_B_RGMII_RXD[2]" LOC = G13;

NET "PHY_B_RGMII_RXD[3]" LOC = F13;

NET "PHY_B_RGMII_RX_CTL" LOC = F14;

NET "PHY_B_RGMII_RX_CLK" LOC = C11;

NET "PHY_B_RGMII_RX_CLK" TNM_NET = "PHY_B_RGMII_RX_CLK1";

TIMESPEC "TS_PHY_B_RGMII_RX_CLK1" = PERIOD "PHY_B_RGMII_RX_CLK1"

8 ns HIGH 50%;

NET "PHY_C_INT_N" LOC = G11 | TIG;

NET "PHY_C_RST_N" LOC = H11 | TIG;

NET "PHY_C_RGMII_TXD[0]" LOC = G9 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_C_RGMII_TXD[1]" LOC = G8 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_C_RGMII_TXD[2]" LOC = F8 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_C_RGMII_TXD[3]" LOC = E8 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_C_RGMII_TX_CTL" LOC = F9 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_C_RGMII_TX_CLK" LOC = A11 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_C_RGMII_RXD[0]" LOC = D10;

NET "PHY_C_RGMII_RXD[1]" LOC = E10;

NET "PHY_C_RGMII_RXD[2]" LOC = F10;

NET "PHY_C_RGMII_RXD[3]" LOC = H10;

NET "PHY_C_RGMII_RX_CTL" LOC = C10;

NET "PHY_C_RGMII_RX_CLK" LOC = D11;

NET "PHY_C_RGMII_RX_CLK" TNM_NET = "PHY_C_RGMII_RX_CLK1";

TIMESPEC "TS_PHY_C_RGMII_RX_CLK1" = PERIOD "PHY_C_RGMII_RX_CLK1"

8 ns HIGH 50%;

NET "PHY_D_INT_N" LOC = D9 | TIG;

NET "PHY_D_RST_N" LOC = D8 | TIG;

NET "PHY_D_RGMII_TXD[0]" LOC = D6 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_D_RGMII_TXD[1]" LOC = C6 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_D_RGMII_TXD[2]" LOC = B6 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;
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NET "PHY_D_RGMII_TXD[3]" LOC = A6 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_D_RGMII_TX_CTL" LOC = A7 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_D_RGMII_TX_CLK" LOC = A10 | OUT_TERM = "UNTUNED_25" |

SLEW = FAST;

NET "PHY_D_RGMII_RXD[0]" LOC = B8;

NET "PHY_D_RGMII_RXD[1]" LOC = A8;

NET "PHY_D_RGMII_RXD[2]" LOC = D7;

NET "PHY_D_RGMII_RXD[3]" LOC = C7;

NET "PHY_D_RGMII_RX_CTL" LOC = C8;

NET "PHY_D_RGMII_RX_CLK" LOC = B10;

NET "PHY_D_RGMII_RX_CLK" TNM_NET = "PHY_D_RGMII_RX_CLK1";

TIMESPEC "TS_PHY_D_RGMII_RX_CLK1" = PERIOD "PHY_D_RGMII_RX_CLK1"

8 ns HIGH 50%;

Note that TX_CTL is same as TX_EN and RX_CTL is same as RX_DV.

RGMII speci�cation requires clock to data skew of 1.5 ns to 2.1 ns, but as all
RGMII wires on the platform are length compensated to approx. 50.5 mm the
clock (or data) wires should be somehow slowed. This can be done either on the
FPGA side (by adjusting IODELAYs or clock phase using DCMs/PLLs [10]) or
better it can be also done by proper con�guration of each phyter (as they are
capable of adding positive or negative clock to data skew) [3].

Some speci�c delay and/or timing constraints are needed for proper function
of the RGMII interface:

NET "PHY_A_RGMII_RX_RXD[?]" TNM_NET = "PHY_A_RGMII_RX_DATA1";

NET "PHY_A_RGMII_RX_CTL" TNM_NET = "PHY_A_RGMII_RX_DATA1";

OFFSET = IN 1.35 ns VALID 3.25 ns BEFORE PHY_A_RGMII_RX_CLK FALLING;

OFFSET = IN 1.35 ns VALID 3.25 ns BEFORE PHY_A_RGMII_RX_CLK RISING;

NET "PHY_B_RGMII_RX_RXD[?]" TNM_NET = "PHY_B_RGMII_RX_DATA1";

NET "PHY_B_RGMII_RX_CTL" TNM_NET = "PHY_B_RGMII_RX_DATA1";

OFFSET = IN 1.35 ns VALID 3.25 ns BEFORE PHY_B_RGMII_RX_CLK FALLING;

OFFSET = IN 1.35 ns VALID 3.25 ns BEFORE PHY_B_RGMII_RX_CLK RISING;

NET "PHY_C_RGMII_RX_RXD[?]" TNM_NET = "PHY_C_RGMII_RX_DATA1";

NET "PHY_C_RGMII_RX_CTL" TNM_NET = "PHY_C_RGMII_RX_DATA1";

OFFSET = IN 1.35 ns VALID 3.25 ns BEFORE PHY_C_RGMII_RX_CLK FALLING;

OFFSET = IN 1.35 ns VALID 3.25 ns BEFORE PHY_C_RGMII_RX_CLK RISING;

NET "PHY_D_RGMII_RX_RXD[?]" TNM_NET = "PHY_D_RGMII_RX_DATA1";

NET "PHY_D_RGMII_RX_CTL" TNM_NET = "PHY_D_RGMII_RX_DATA1";

OFFSET = IN 1.35 ns VALID 3.25 ns BEFORE PHY_D_RGMII_RX_CLK FALLING;

OFFSET = IN 1.35 ns VALID 3.25 ns BEFORE PHY_D_RGMII_RX_CLK RISING;
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These constraints can be aplied only in RX direction (i.e. from phyter to
FPGA) when clock to data skew is programmed to 1.8 ns. In TX direction (i.e.
from FPGA to phyter) such skew has to be adjusted with regard to phyter requi-
rements that is between 1.0 ns and 2.6 ns [3] but no speci�c FPGA constraints
are needed.

3.5 USB3.0 subsystem

The µG4-150 platform has an USB 3.0 interface (type B connector shown on
the Fig. 8) allowing up to 5 Gbps bidirectional transfers on it. This interface is
serviced by the Cypress FX3 SuperSpeed USB Controller [4] that is connected to
the FPGA via 32 bit generic programmable interface (Cypress GPIFII) running
at frequencies up to 100 MHz. It allows up to 400 MBps transfers from FPGA
to USB 3.0 interface or vice versa (without protocol and controller software
overhead).

Obrázek 8. A - USB 3.0 controller, B - USB 3.0 connector, C - Reset jumpers (set to
reset controller from FPGA), D - Reset button, E - PMOD[0] (with 2.5 V on the left
and GND on the right), F - PMOD[1] (with 2.5 V on the left and GND on the right),
G - PMOD[2] (with 2.5 V on the left and GND on the right), H - Flash memory, I
- I2C pinheader (from the left to the right: 2.5 V, SCL, SDA and GND) J - UART
testing points (up: TX, down: RX), K - JTAG interface (from the left to the right: 2.5
V, TCK, TMS, TDI, TRST, TDO and GND).

Connection to the FPGA is evident from this UCF example (assuming IOSTAN-
DARD is implicitly "LVCMOS25"):

NET "USB_DQ[0]" LOC = W10;

NET "USB_DQ[1]" LOC = W9;

NET "USB_DQ[2]" LOC = AA10;

NET "USB_DQ[3]" LOC = V13;
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NET "USB_DQ[4]" LOC = W13;

NET "USB_DQ[5]" LOC = V11;

NET "USB_DQ[6]" LOC = V7;

NET "USB_DQ[7]" LOC = W11;

NET "USB_DQ[8]" LOC = W8;

NET "USB_DQ[9]" LOC = AA8;

NET "USB_DQ[10]" LOC = AB10;

NET "USB_DQ[11]" LOC = Y9;

NET "USB_DQ[12]" LOC = Y10;

NET "USB_DQ[13]" LOC = AB9;

NET "USB_DQ[14]" LOC = AB8;

NET "USB_DQ[15]" LOC = R15;

NET "USB_DQ[16]" LOC = W18;

NET "USB_DQ[17]" LOC = AB19;

NET "USB_DQ[18]" LOC = AA18;

NET "USB_DQ[19]" LOC = Y19;

NET "USB_DQ[20]" LOC = Y18;

NET "USB_DQ[21]" LOC = V18;

NET "USB_DQ[22]" LOC = T18;

NET "USB_DQ[23]" LOC = V19;

NET "USB_DQ[24]" LOC = Y17;

NET "USB_DQ[25]" LOC = W17;

NET "USB_DQ[26]" LOC = V17;

NET "USB_DQ[27]" LOC = AB18;

NET "USB_DQ[28]" LOC = T16;

NET "USB_DQ[29]" LOC = U17;

NET "USB_DQ[30]" LOC = R16;

NET "USB_DQ[31]" LOC = T17;

NET "USB_PCLK" LOC = AB11;

NET "USB_CTL[0]" LOC = AB14;

NET "USB_CTL[1]" LOC = Y14;

NET "USB_CTL[2]" LOC = W14;

NET "USB_CTL[3]" LOC = T15;

NET "USB_CTL[4]" LOC = W15;

NET "USB_CTL[5]" LOC = AA14;

NET "USB_CTL[6]" LOC = AB15;

NET "USB_CTL[7]" LOC = AB7;

NET "USB_CTL[8]" LOC = AB17;

NET "USB_CTL[9]" LOC = Y15;

NET "USB_CTL[10]" LOC = Y16;

NET "USB_CTL[11]" LOC = AB16;

NET "USB_CTL[12]" LOC = AA16;
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USB_DQ[*] is programmable data interface, USB_PCLK is (from the FPGA
point of view) external clock used for communication on data interface and
USB_CTL[*] is programmable control interface. More information can be found
in the Cypress documentation. The controller can inform about di�erent events
using its interrupt. For resetting the controller, reset signal can be used. Follows
UCF template (assuming IOSTANDARD is implicitly "LVCMOS25") for in-
terrupt and reset signals (both connected to the FPGA):

NET "USB_INT_N" LOC = AB21;

NET "USB_RESET_N" LOC = AA21;

But the controller reset can be set externally via platform jumpers shown
on the Fig. 8. So it is possible to reset controller externally from the FPGA or
using second push button on the platform.

There is also I2C �ash memory from Microchip [5] available for booting
purposes of the controller. The memory size is 1024 kb and its I2C interface is
connected to the controller. On the other side it is connected to the platform
pinheader (e.g. for external �ash programming) and also to the FPGA. Special
FPGA enable signal (USB3_I2C_EN) can be used for enabling or disabling
access to this memory as memory itself has write protect signal connected �rmly
to the ground. Follows UCF template or I2C interface to the FPGA (assuming
IOSTANDARD is implicitly "LVCMOS25"):

NET "USB_I2C_EN" LOC = T7;

NET "USB_SCL" LOC = Y8;

NET "USB_SDA" LOC = Y7;

For selecting location of the boot �le for the controller, PMODs are bring out
to the platform jumpers as shown on the Fig. 8. Di�erent sources of boot �le will
be scanned depending on PMODs adjustment as it is shown in Table 4, where NC
means not connected and 2.5 V/GND means connection to the power/ground
jumper.

USB 3.0 controller boots from PMOD[0] PMOD[1] PMOD[2]

Sync ADMux (16-bit) NC GND GND

Async ADMux (16-bit) NC GND 2.5 V

USB boot NC 2.5 V 2.5 V

Async SRAM (16-bit) GND NC NC

I2C, On Failure, USB Boot is Enabled) NC 2.5 V NC

I2C only 2.5 V NC NC

SPI, On Failure, USB Boot is Enabled GND NC 2.5 V

Tabulka 4. USB 3.0 controller boot options depending on the PMODs con�gurations.

UART interface (but only RX and TX data signals) is connected directly to
the FPGA and internal FPGA multiplexor can be used to switch this UART
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to physical UART interface (see Serial port section). This UART has also its
testing point on the platform shown on the Fig. 8. Here is an UCF example for
UART:

NET "USB_UART_TX" LOC = D5 | IOSTANDARD = LVCMOS15;

NET "USB_UART_RX" LOC = E4 | IOSTANDARD = LVCMOS15;

Other controller GPIOs, as is 45, 50 (I2S_CLK), 51 (I2S_SD), 52 (I2S_WS),
53 (UART_RTS), 54 (UART_CTS), 57 (I2S_MCLK), are all not connected to
the FPGA or elsewhere. Finally, there is a separate full JTAG interface available
to the controller. This interface is shown on the Fig. 8.

3.6 Serial port

Not only for debugging purposes µG4-150 platform consists also from the simple
UART interface (again just RX and TX data signals) that can be accessed via
micro (type B) USB compatible port shown on the Fig. 9. Translation from
simple UART to USB interface is done by the FT232R USB UART IC chip
from FTDI [2] also shown on the Fig. 9. FPGA port mapping and required
voltage level for this UART is shown in this example:

NET "UART_TX" LOC = H8 | IOSTANDARD = LVCMOS15;

NET "UART_RX" LOC = J7 | IOSTANDARD = LVCMOS15;

Obrázek 9. A - USB connector, B - UART to USB convertor, C - microSD slot.

3.7 Micro Secure Digital port

µG4-150 platform is equipped with micro Secure Digital (SD) port shown on
the Fig. 9. This port can be used for micro SD compatible memory cards (or
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SDHC/SDXC) running at standard 3.3 V. Connection to the FPGA and required
voltage level is evident from following UCF example:

NET "SD_CS_N" LOC = D17 | IOSTANDARD = LVCMOS15;

NET "SD_CLK" LOC = E16 | IOSTANDARD = LVCMOS15;

NET "SD_DI" LOC = A18 | IOSTANDARD = LVCMOS15;

NET "SD_DO" LOC = B18 | IOSTANDARD = LVCMOS15;

Signal SD_CS_N is equivalent with CD/DAT3, SD_CLK is equivalent with
SCLK, SD_DI is equivalent with CMD, SD_DO is equivalent with DAT0 and
last interface signals (i.e. DAT1 and DAT2) are not connected.

3.8 LED indicators

The platform is equipped with LED indicators. The green ones can be used
for debugging or other signalization purposes as they are connected directly to
the FPGA. These green LEDs are active in low voltage level (e.g. construction
LED(3) <= '0'; in VHDL ensure shinning of fourth LED) and are shown on
the Fig. 10. The UCF should look like (assuming IOSTANDARD is implicitly
"LVCMOS25"):

NET "LED[0]" LOC = C5;

NET "LED[1]" LOC = A5;

NET "LED[2]" LOC = C17;

NET "LED[3]" LOC = A17;

Obrázek 10. A - Green LEDs (upper one: 0) and B - P1 pinheader.

The most of blue LEDs (not shown on the Fig. 10) are used to indicate proper
function of platform power suppliers (i.e. one for 5V@5A, for two 3.3V@1A,
for 2.5@3A, for 1.5V@3A, for 1.2V@4A and for 0.75V@3A supplier). The last
blue LED (near the Push button on the Fig. 5) indicates that FPGA is booted
(connected to the FPGA_DONE pin), otherwise the only one on-board red LED
is shining.
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3.9 General purpose inputs and outputs

There are sixteen general purpose input and output (GPIO) pins connected
directly to the FPGA via P1 pinheader that is shown on the Fig. 10.

These GPIOs can be used to extend connectivity of the platform using, for
example, PMODs. GPIOs connection is explained in Table 5.

5 V 5 V

1.5 V 1.5 V

GPIO[0] GPIO[1]

GPIO[2] GPIO[3]

GPIO[4] GPIO[5]

GPIO[6] GPIO[7]

GPIO[8] GPIO[9]

GPIO[10] GPIO[11]

GPIO[12] GPIO[13]

GPIO[14] GPIO[15]

GND GND

Tabulka 5. GPIOs and other pins on the pinheader P1.

GPIOs are connected to the 1.5 V bank (shared with DDR3 memories), so
UCF for them should look like:

NET "GPIO[0]" LOC = L15 | IOSTANDARD = LVCMOS15;

NET "GPIO[1]" LOC = W22 | IOSTANDARD = LVCMOS15;

NET "GPIO[2]" LOC = K18 | IOSTANDARD = LVCMOS15;

NET "GPIO[3]" LOC = W20 | IOSTANDARD = LVCMOS15;

NET "GPIO[4]" LOC = L17 | IOSTANDARD = LVCMOS15;

NET "GPIO[5]" LOC = V20 | IOSTANDARD = LVCMOS15;

NET "GPIO[6]" LOC = M17 | IOSTANDARD = LVCMOS15;

NET "GPIO[7]" LOC = U19 | IOSTANDARD = LVCMOS15;

NET "GPIO[8]" LOC = M16 | IOSTANDARD = LVCMOS15;

NET "GPIO[9]" LOC = R19 | IOSTANDARD = LVCMOS15;

NET "GPIO[10]" LOC = M18 | IOSTANDARD = LVCMOS15;

NET "GPIO[11]" LOC = P19 | IOSTANDARD = LVCMOS15;

NET "GPIO[12]" LOC = N16 | IOSTANDARD = LVCMOS15;

NET "GPIO[13]" LOC = P18 | IOSTANDARD = LVCMOS15;

NET "GPIO[14]" LOC = P17 | IOSTANDARD = LVCMOS15;

NET "GPIO[15]" LOC = P20 | IOSTANDARD = LVCMOS15;

4 Development support

It is recommended to use Xilinx EDK (Embedded Development Kit) and Xilinx
SDK (Software Development Kit) tools for fast development and prototyping.
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There are several FPGA IP cores available from Xilinx for use with the µG4-150
platform (e.g. SPI, IIC, UART, GPIO) and more IP cores are available from
authors. Also the µG4-150 platform description �les as well as design examples
for several interfaces are available on request. It is also possible to get a special
port of Linux OS for Xilinx MicroBlaze soft processor running in the FPGA of
µG4-150 platform. There is also a bootloader that can be very useful for booting
operating system from memory cards available on the platform. Please contact
authors if you are interested in this software and �rmware support or if you need
any other hardware technical support.
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