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A B S T R A C T

The privacy of Bitcoin transactions is a subject of ongoing research from parties interested in enhancing their
security, as well as those seeking to analyze the flow of funds happening in the network. Various techniques have
been identified to de-obfuscate pseudonymity, e.g., heuristics to cluster addresses and transactions, automatic
tracing of transaction chains based on usage patterns/features that may reveal common ownership. These
techniques gave rise to services that attempt to make these techniques unreliable with specific forms of behavior.
Examples of such behavior include using one-time addresses or transactions with multiple participants.
Centralized services employing these behavior patterns, commonly known as tumblers or mixers, offer customers
a way to obfuscate their financial flows. In turn, new approaches have been proposed in recent scientific liter-
ature to exploit the way the mixers operate in order to gain insight into the underlying financial flows. In this
paper, we analyze some of these approaches and identify challenges in the context of their application to a
particular modern mixing service – Anonymixer. Furthermore, based on this analysis, we propose a novel
approach for identification of addresses involved in mixing with capability to distinguish between depositing/
withdrawing parties and mixer inner addresses. The approach utilizes wallet fingerprints, which we have
extracted using statistical measurements of mixer’s behavior. An internally developed tool implementing the
proposed techniques automates the deobfuscation process and outputs individual money transfers.

1. Introduction

Cryptocurrencies are often perceived as a technology that provides
near-instantaneous, unregulated, and cryptographically-secured money
transfers between parties. The reliance on cryptography provides ano-
nymity (e.g., Monero, Zcash) or at least pseudonymity (e.g., Bitcoin,
Ethereum). As such, cryptocurrencies have pioneered a new way of
financial interaction and doing business. Cryptocurrencies have also
become the primary tool for a number of illicit activities, including
ransomware, procurement of illegal goods, gambling, and sanctions
evasion. For these reasons, cryptocurrencies are the subject of research
and innovation efforts aimed at improving and reducing their security.
Various parties in the ecosystem are competing for and against more law
enforcement (e.g., police in need of successful progress in crime inves-
tigation (Europol)) and regulatory oversight (e.g., governments using
distributed ledger system (Schwalm et al., 2022)). The considerable
success of darknet marketplaces, ransomware campaigns, and digital
scams/frauds has prompted interest from law enforcement agencies
(LEAs), which in turn has led to the stimulation of development in the

area of cryptocurrency traceability.
To address the challenges posed by the identification of relations

between cryptocurrency addresses and transactions (particularly the
impact of co-spent clustering (Meiklejohn et al., 2016; Möser and Nar-
ayanan, 2021), a range of counter-techniques have emerged to obfuscate
money transfers. The capacity of Bitcoin-like cryptocurrencies to
consolidate numerous inputs and outputs in a single transaction has
provided a foundation for CoinJoin and mixing.

There are two approaches to transaction obfuscation on the Bitcoin
base layer in the current landscape: a centralized one (mixers), and a
decentralized one (CoinJoin). Users of mixers send their coins to an
address provided by the service, with a promise of receiving an appro-
priate amount of coins later at a withdrawal address they provided.
Deposit and withdrawal transactions can be causally linked, but modern
mixers typically execute user withdrawals using different coins;
behavior sometimes referred to as swapping. Centralized mixers have a
reputation for disappearing, be it by an exit scam or a forceful shutdown
by a LEA (as was the case of the infamous ChipMixer). The second on-
chain obfuscation approach is trustless but may require some extra
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effort from its users – CoinJoin. Users use third-party tools to negotiate
joined transactions; each user provides a set of inputs and has a claim on
a set of outputs. The magic is, or rather should be, that an outside
observer cannot link the inputs of a specific user to a set of their outputs
with nothing but pure chance (this should be true even for the partici-
pants with one another, but it’s not trivial to achieve perfectly). The
most known example is probablyWasabi Wallet, which recently stopped
providing this service, as some other providers of the same service face
jail. The next best example is thus JoinMarket.

The article’s primary contribution is the development of a novel
approach for identifying addresses involved in cryptocurrency mixing
services, particularly in the context of centralized mixing service, Ano-
nymixer. This approach employs wallet fingerprinting, a technique that
utilizes statistical measurements of mixer behavior, to differentiate be-
tween depositing and withdrawing parties, as well as the internal ad-
dresses of the mixer. The accompanying tooling facilitates the automatic
identification of parties involved in mixing, thereby enhancing the
ability to classify and trace financial flows within mixers. This article
presents a novel method for enhancing the visibility of mixing opera-
tions and provides a foundation for further research into cryptocurrency
privacy techniques.

This article is organized as follows. Section 2 outlines related work
and the state of the art of the technologies used. To establish a common
ground for later inspection of transaction patterns within the Anonym-
ixer service, section 3 provides an overview of the most common
transaction classification types and their interpretations. Section 4 de-
scribes in more detail one particular mixer that serves as a basis for
subsequent research, including its modus operandi and potential for
reverse-engineering. Section 5 describes the construction of wallet
fingerprint and its intricacies: component selection and evaluation.
Section 6 focuses on application of the fingerprint on the studied mixer
and debates the limitations of this study and approach. Section 7 dis-
cusses the achieved state and future work.

2. Related work

In this section, we provide an overview of the current state of the art
and place this work in the context of the research of others.

One of the first research articles about mixing or money laundering
was published by M. Möser et al., in 2013 (Möser et al., 2013). The
authors examined three then-relevant services: Bitcoin Fog, BitLaundry
and Send Shared (functionality of Blockchain.info). To analyze these
services, the researchers ran experiments using the offered services as
customers. By subsequent analysis of the transaction graph with the
added knowledge of inputs and outputs, researchers were able to
conclude that BitLaundry provided poor anonymity. All of these services
have been shut down since then. It is difficult to evaluate how well the
de-mixing techniques presented in the paper apply to more recent mixer

implementations, as the landscape has transformed significantly: the
volume of daily transactions has increased, users are better educated
about best practices for preserving their privacy, and are able to pick
from a diverse ecosystem of wallet implementations. T. de Balthasar
et al. (de Balthasar et al., 2017) studied three mixing services Darkla-
under, Bitlaunder and CoinMixer and found them to offer poor anonymity
for their customers, as the authors were able to detect a path between
wallets and return addresses. M. Prado-Romero et al. (Prado-Romero
et al., 2018) approached the identification of Bitcoin mixing accounts by
modeling Bitcoin as a social network and outlining anomaly commu-
nities. L. Wu et al. (Wu et al., 2021) categorized mixing services into two
categories: swapping and obfuscating. The authors provided four different
examples of these services: ChipMixer, Wasabi Wallet, ShapeShift, and
Bitmix.biz and conduct analysis to estimate the profitability. J. Pakki
et al. (Pakki et al., 2021) analyzed 21 mixing services and explored their
varying features, advertised, and actual behaviour. A. Shojaeinasab
et al. (Shojaeinasab et al., 2023) conducted research on three mixing
services, MixTum, Blender and CryptoMixer. The authors observed peel
chains used to payout the customers of MixTum and Blender and devised
an algorithm, using address types, for their tracking.

G. Kappos et al. (Kappos et al., 2022) contributed greatly to the
research of transaction peel chains. To track peel chain forward and
backward through the transaction graph, the authors clustered ad-
dresses, extracted address features, and established a change strategy for
each cluster using the output index of the change address.

A different obfuscation method, Coin Join transaction, provides a
potentially trustless way for users to mix their coins. Möser et al. (Möser
and Böhme, 2017) studied one such trustless implementation, Join-
Market. The authors could estimate the daily volume and even the total
value mixed within 13 months. As recently as 2023, H. Schnoering et al.
published a research article (Schnoering and Vazirgiannis, 2023) on
detecting CoinJoin transactions on the Bitcoin blockchain.

While there has not been any published academic research, to the
best of the authors’ knowledge, delving into extracting fingerprints
(default parameters) of software wallets, the Bitcoin community has
done a significant amount of work. Recently, one of the Bitcoin Core
contributors, Ishaana Misra, published a well-researched post (Ishaana,
2023) on her blog, demonstrating that wallets (in their default settings)
produce consistently constructed transactions. As there is a
non-negligible amount of various parameters, one can use these pa-
rameters to cluster transactions according to the wallet that likely pro-
duced them and associate the clusters with a specific wallet
implementation. Work by M. Möser et al. (Möser and Narayanan, 2021)
on fingerprints was used as a another reference.

Our work builds on the shoulders of these giants as it explores a
method of traversing ambiguous peel chains of one mixer service using
wallet fingerprint with novel and detailed components and CoinJoin
detection.

3. Overview of transaction types

In order to understand the proposed method for deobfuscating
mixers, it is important to provide a robust theoretical background about
different types of cryptocurrency transactions, as well as an assessment
of the impact on privacy provided. We used the ideas written by OXT
Research (ErgoBTC, 2021) as a base for this section, which provides a
classification of Bitcoin-like transactions.

This classification aids in more accurately identifying instances when
the ownership changes and when it remains unchanged. Since users
have great freedom in the way they create their transactions, the
following section can never be exhaustive and applicable to every

Fig. 1. Transaction <few:2>. The most common interpretation is simple spend -
a small number of input addresses (IA), one change address (CA), and one
output address (OA).
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transaction. However, if users behave rationally with the construction of
their transactions (i.e., try to minimize their fees, stick with a particular
wallet implementation for a longer period of time), they exhibit
consistent patterns.

The critical factor for classification is transaction shape — the
number of inputs and outputs. Still, supporting factors like address
types, transaction parameters, and clustering heuristics influence clas-
sification and, especially, interpretation.

Term “transaction shape” is formulated in format <n:m>, where n is
the number of input addresses and m is the number of output addresses.
Keyword few refers to less than or equal to 5, while keywordmany refers
to more than 5. This threshold was chosen for this article, and it is based
on the current input count distribution within the transactions.

3.1. Few-to-two transaction

Transaction shape: typically <1:2>, generally <few:2>
Transactions with a single or few inputs and exactly two outputs

(depicted in Fig. 1) are typically interpreted as a simple spend. While the
number of inputs can vary, as the creator of this transaction may have to
include additional inputs to produce sufficient value, the number of
outputs stays the same. One output address is under the control of the
receiver, and the other is the sender’s change output; such assumption
stems from the nature of so called unspent transaction output (UTXO)
accounting model of Bitcoin-like cryptocurrencies. If only a single
address appears both as the input and the output, it is deemed as change,
and the other output belongs to the receiver of the funds — such case is
referred to as transaction with trivial change.

Transactions with shape <1:2> are the most common type of
transaction1, accounting roughly for 75 % of all transactions with a 30-
day moving average as of the time of writing.

3.2. One-to-one transaction

Transaction shape: <1:1>
Transactions with one input address and one output address, as

depicted in Fig. 2, are referred to as move or sweep. Under the primary
interpretation, a single owner owns both the input and output address.
There can be various reasons for this behavior, such as an attempt to
obfuscate ownership of funds or transfer to a new address type.

As for the obfuscation aspect, if the amount to be transferred is
known prior, a user may use a simple spend transaction to generate the
exact amount and transfer it to a new address under its control. When
the transfer is to be executed, only transaction of type<1:1> is required.

In cases where an available UTXO matches the desired value to be
transferred plus transaction fee, <1:1> transaction can be used as a
changeless-spend.

There are thus two common interpretations: either the funds are
moved to an address under the sender’s control or, if there has been a
prior simple spent transaction or the value is expected or matched by
chance, the transaction can transfer funds between different users. The
chance that such matching UTXO is available is greater when there are
more available UTXOs.

3.3. Many-to-one transaction

Transaction shape: <many:1>
As a single Bitcoin owner can have their funds spread across multiple

addresses, users may create a transaction that consolidates and cen-
tralizes these spread finances to a single address. These transactions
typically have a multitude of smaller inputs and a single output, as
depicted in Fig. 3. Addresses on both sides of the transaction are deemed
to belong to a single user. If, however, the transaction has more than a
single output, it can also be interpreted as consolidation payment, where
the outputs include both the change of the sender and an output for the
receiver, or CoinJoin, described later in section 3.5, where different
owners own their subset of inputs and outputs.

3.4. One-to-many transaction

Transaction shape: <1:many>
Conceptually reverse action to a consolidation transaction, with a

typically single input and a multitude of outputs. It has two different
interpretations: batch spend or tokenization/spread. This type of trans-
action is depicted in Fig. 4.

In the batch spend interpretation, a single user is batching multiple
payments together. This behavior is typical for services with large flows,
such as exchanges, where many users can request withdrawals simul-
taneously. In such a scenario, output addresses are independent, and
there will be a return address among them.

In the tokenization/spread interpretation, a single user spreads the
funds across multiple addresses under their control to prevent a possible
future link between their actions, intending to enhance total privacy and
limit traceability.

3.5. CoinJoin transaction

CoinJoin transactions are special transactions orchestrated to
enhance privacy. While previously mentioned transaction types were
always created by a single user (i.e., all addresses on the left side of the
transaction can be deemed as belonging to a single user), CoinJoins has
multiple participants.

There are several popular implementations for CoinJoin construc-
tion: JoinMarket, Wasabi, and Samourai, each with its own way of con-
structing CoinJoin transactions and differing features. The following
subsections outline some of the basic properties of the above-mentioned
services. We deem it important to note that Samourai services were

Fig. 2. Transaction <1:1>. The two most common interpretations are change-
less spend and move.

Fig. 3. Transaction <many:1>. The most common interpretation is
consolidation.

Fig. 4. Transaction <1:many>. The two most common interpretations are
batched spend and spread.

1 https://transactionfee.info/charts/transactions-1in-2out/.
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seized by LEAs in April of 2024 and Wasabi consequently shut down the
operation of their CoinJoin coordinator service. However, it is still
possible to use Wasabi to conduct CoinJoins by utilizing an alternative
coordinator service. Users may run their own CoinJoin coordinator, or
use freely available sources2 to discover other coordinators operated by
third parties.

3.5.1. JoinMarket CoinJoin transaction
JoinMarket is a popular wallet implementing CoinJoins. A taker, party

interested in performing a CoinJoin, coordinates with a set of makers,
who provide liquidity for the transactions. The wallet internally uses a
concept of mixdepth, a wallet structure intended to avoid address reuse.

There are, however, other observations about the generated trans-
actions that can be made. For a CoinJoinwith Nmakers, the transactions
will: a) have N + 1 equal sized outputs, b) have as many change outputs
as required, c) have at least N inputs. Unlike other wallet providers,
JoinMarket does not use fixed-size denominations, i.e., the size of
transaction’s outputs is decided by the taker. The number of makers
involved (N) is by default randomly picked between 8 and 10. When it
comes to transaction parameters, nVersion is set to 2 and nLockTime
to 0.

3.5.2. Wasabi CoinJoin transaction
Wasabi is another open-source wallet utilizing CoinJoins to improve

user privacy.
Unlike JoinMarket, Wasabi CoinJoins are restricted to a fixed set of

denominations. The list of possible denominations is stated in their
website3. This makes transactions whose outputs correspond to one of
the possible denomination values likely to be Wasabi CoinJoins. How-
ever, Wasabi can also be used to create CoinJoinswhich do not follow the
aforementioned denomination list, although we suspect that such usage
is not very common. Wasabi uses 21 as the number of inputs by default
and refuses to execute CoinJoins with less.

3.5.3. Samourai CoinJoin transaction
Samourai was an open-source wallet with privacy-enhancing fea-

tures competing with Wasabi. On 25th April 2024, its co-founders have
been arrested and the website has been seized by LEAs. The mixing
service it provided (named Whirpool) has been shut down.

4. Diving deeper into a modern tumbler

The following section analyses one of the most prominent mixing
services with many recommendations. Anonymixer announced itself on
the BitcoinTalk forum in August 2020, and it is available on the clear-
web4 and darkweb5. One of its most stressed aspects is the lack of
Cloudflare or similar proxies on the clearweb, which differentiates it
from the competition. As these proxies establish a secure TLS connection
with the customer instead of the mixer server, data are decrypted on the
proxy and typically cached. Proxies thus provide a security concern for
privacy-focused users, especially when USA-based proxies, such as
Cloudflare, are used.

4.1. Online presence

To gain a better idea about the proclaimed functionality, we visited
and read through the official website and profile on BitcoinTalk forum as

well as AltCoin Talks forum.
Online sources mention following key takeaways: a) the minimum

mixer withdrawal value is 0.0001 BTC; anything below this value is not
used to pay out a customer; b) The creator is familiar with CoinJoin,
especially with JoinMarket; c) the software wallet is custom-made with
obfuscation features; it avoids common clustering heuristics and makes
its operation look like regular Bitcoin transactions; d) deposited coins
are not available for withdrawal (for some other customer) for 18 blocks
from the moment of deposit.

4.2. Mixing process

To start a mixing session, customers can enter up to 20 output ad-
dresses; P2TR6 addresses are not supported as of September 2024. Next,
a mixing session with a lifetime of 72 h is created for the user (identified
by a GUID). As a privacy-enhancing feature, each entered withdrawal
address gets a randomly generated delay before the funds reach the
address. The auto-generated delays increase by 0–35 min for each
consecutive address, and can also be manually overwritten by the
customer if desired. Afterward, the customer is provided a letter of
guarantee, which contains a summary of the outgoing addresses, their
amounts, and delays. Additionally, it includes ten newly created deposit
addresses: eight of type P2WPKH,7 one of type P2SH8 and one of type
P2PKH9. The customer is then presented with the total amount
(including the fee) to be sent to the mixer. While any of the provided
deposit addresses can be chosen for the deposit, the mixer presents
P2WPKH addresses as the recommended method. After a single confir-
mation, the service starts sending withdrawal transactions.

To gain insight into the inner workings of the mixer, a total of 22
mixing sessions were carried out: 20 in March 2023 to gain initial data
and an additional 2 in September 2024 to verify that the results still
held.

The data we collected during these experiments include a) address
specific attributes – type, number of transactions, delay between tra-
sactions and b) transaction specific attributes – number of inputs and
outputs, value, signatures, attributes like nLockTime, nVersion,
nSequence of inputs and fee per virtual byte (fee/vbyte).

As the often-used words deposit and withdrawal refer to different
actions in each of the following sections, we provide a diagram with
explicitly stated names for each case.

We structure the experiments in the following way: firstly, we look at
the deposits, withdrawals, and change addresses, respectively. Next, we
discuss the observed patterns, and lastly, in the following section 5, we
apply the collected knowledge.

4.3. Inspection of deposits

Mixer deposit, in this context, refers to a customer sending coins to
address provided by the service. The diagram of the deposit with naming
clarification is depicted in Fig. 5.

With our 23 deposits, we were able to uncover that a) deposit ad-
dresses always has only one deposit and up to one withdrawal trans-
action, b) deposit and withdrawal transactions from the deposit address
have delay between 102 and 2231 blocks, averaging 795.26 blocks, c)
signature sizes vary as one of its components (r-value) is not ensured to

2 For example https://wasabist.io/or https://github.com/Kukks/wasabino
str.
3 https://docs.wasabiwallet.io/FAQ/FAQ-UseWasabi.html#what-are-the-e

qual-denominations-created-in-a-coinjoin-round.
4 https://anonymixer.com/.
5 http://btcmixer2e3pkn64eb5m65un5nypat4mje27er4ymltzshkmujmxl

myd.onion.

6 Most recent address type from 2021; address starts with bc1p; the output is
unlocked by a script and its input (script path spend) or signature by a corre-
sponding private key(s) (key path spend).
7 Most common type of address; address starts with bc1q; output is unlocked

with a signature and a public key.
8 Legacy method of locking output by a customizable script; address starts

with 3; output is unlocked by a script and its input.
9 Legacy method of locking output to a private-public key pair; address starts

with 1; output is unlocked by a signature and a public key.
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be as small as possible, d) withdrawal transactions were either Join-
Market CoinJoins or <1:1> transactions with mostly optimal fees10, e)
withdrawal transaction had varying attributes.

4.4. Inspection of withdrawals

Mixer withdrawal, in this context, refers to a customer receiving a
payout from the service using a withdrawal transaction. The withdrawal
transaction is likely created by the service rather than some other
customer, as that would require a steady stream of customers with
similar mixing amounts. The diagram of withdrawal, as well as naming
clarification, is depicted in Fig. 6.

With our 20 withdrawals, we were able to uncover that a) address
type of the withdrawal address can be P2WPKH (18 cases), P2SH-
P2WPKH11 (1 case) or P2PKH (1 case), b) the number of transactions is
equal exactly to two, c) the delay between deposit and withdrawal
transactions was between 66 and 8979 blocks, averaging 1718 blocks,
d) signature sizes vary, e) transaction fee is mostly optimal, f) position of
change address between outputs is not stable and g) transaction pa-
rameters vary for each transaction.

We follow up by inspecting deposits onto the withdrawal address, i.
e., transactions that ’prepared’ the value onto the withdrawal address
for our withdrawal transaction. We concluded that these transactions
were, in some cases, created by the mixer and by the customer in others.
To validate this point, we provide the follow-up with case studies: two
instances where we received the deposit of another user and two
different instances where the received value was placed onto the address

by the service.

4.4.1. User-created deposit
In two experiments, the value was deposited (’prepared’) onto the

withdrawal address with <many:many> transactions. We were not able
to associate these transactions with any common CoinJoin scheme or
service. Thanks to available OSINT information12, we found that inputs
into these transactions are associated with OMG Dark Market. We thus
assume that some deposits into the mixer go directly to someone else as
their withdrawals; the mixer can swap coins between users.

4.4.2. Service-created deposit
In two other experiments, the value was deposited (’prepared’) onto

the withdrawal address by our other withdrawal. In other words, the
change address within the withdrawal transaction for one session was
later used to execute another, with a different withdrawal for our other
session. Thus, we conclude that the mixer can ’prepare’ the funds for
future withdrawal by itself; the mixer does not only swap coins between
users.

4.5. Inspection of change addresses

To complete the initial inspection of the mixer-associated activities,
we inspect the change addresses of our withdrawal transaction. The
diagram of change address handling, as well as naming clarification, is
depicted in Fig. 7.

Out of 20 sessions with 20 withdrawal transactions, 16 contained a
change address. While these additional outputs are not guaranteed to
belong to the service, we consider it reasonable to assume most of them
do, as multiple customers would have to execute withdrawals at the
same blockheight with exactly the correct value to produce a changeless
transaction of shape <1:2>. In the context of change addresses, we
found that a) address type was always P2WPKH, b) it was associated
with exactly two transactions — one deposit and one withdrawal, c)
delay between the two transactions was between 303 and 32 761 blocks
with an average of 4 957 blocks, d) signature sizes differ, e) withdrawal
transaction type was either <1:2>, <1:1> or <many:1> and f) usually
an optimal fee and high variance on all observed transaction parameters.

4.6. Discussion on the observed behavior

Running our experiments, we confirmed that the operator of the
Anonymixer service provides above-standard service for its users (when
compared to previously studied mixers (de Balthasar et al., 2017; Sho-

Fig. 5. Diagram of deposit. Deposit transaction (DTx), created by user wallet,
placed UTXO onto the deposit address (DA). Sometime later, the DA partici-
pates in a withdrawal transaction (WTx). Because DTx is created by user wallet,
it is irrelevant for this inspection.

Fig. 6. Diagram of withdrawal. Deposit transaction (DTx) placed UTXO onto
the withdrawal address (WA). Sometime later, the withdrawal address creates a
withdrawal transaction (WTx), putting UTXO onto the output address (OA) and
receiving change UTXO on the change address (CA). Some withdraw trans-
actions were of shape <1:1> and thus did not include any change address. OA is
under our control andWA under Anonymixers control, owner of CA and creator
of DTx are currently uknown.

Fig. 7. Diagram of change address handling. Deposit transaction (DTx),
transaction executing the withdrawal from the service, placed UTXO onto the
change address (CA). The change address later participates in a withdrawal
transaction (WTx). These withdrawal transaction were either of shape <1:1>,
<many:1> or <few:2>.

10 Calculated from the average fee/vbyte in the transaction’s block. We
consider optimal fees to be below double the average of the block.
11 Address type bridging legacy and SegWit addresses; address starts with 3;
output is unlocked by a signature and a public key. 12 https://tokenscope.com/.

J. Zavřel et al.
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jaeinasab et al., 2023). The custom implementation employs seemingly
randomized transaction parameters, making it seem like two subsequent
transactions were made by a different user.

In scenarios where user deposits go directly to another user without
the involvement of any other address, the visibility of the transaction is
limited. The same goes for deposits directly deposited into the Join-
Market ecosystem.

When it comes to payouts from the mixer, we observed two different
transaction shapes: a) withdrawal using transaction with shape <1:1>;
and b) withdrawal using transaction with shape <1:2>. In either case,
the value is placed onto the withdrawal address in advance and either
directly by another service customer (as their input into the service) or
by the service itself (as a change from the previous withdrawal). In cases
when the service places a remainder from user withdrawal to a new
address, which is later used for another withdrawal, a peel chain is
created. Peel chain refers to a pattern commonly found on the Bitcoin-
like blockchains. It refers to a chain of variable length of typically
<1:2> transactions, where a larger amount is gradually, through the
individual transactions, being ’peeled’ and typically sent to various
addresses. A general depiction of peel chaining is provided in Fig. 8).
These chains can be traversed forward and backward once a single
participating address is discovered.

In experiments where change address was encountered, it was later
withdrawn from using <1:2> — creating another link the in the peel
chain, <1:1> — end of the peel chain, or <many:1> — reset of the peel
chain.

Interestingly, the transfer out from the change address came in three
distinct varieties: <many:1>, <1:1>, or <few:2>, with a total of 12
unique transactions observed. Out of the eight consolidation trans-
actions (<many:1>), only four were unique, meaning multiple change
addresses from different sessions were later used in a transaction
together. This hints that these addresses are under the control of the
mixer service, as the mixes were done on different days at different
times — it is unlikely that a single customer of the service was mixing at
the same exact time on different days on four occasions. Since we are
confident that the service performed these consolidation transactions, we
can later inspect other inputs and track them backward in the trans-
action history.

The service claims that withdrawals can be batched together if
scheduled for the same time. However, we could not verify whether this
behavior occurs across different mixing sessions, i.e., for different cus-
tomers. On the other hand, we later confirmed that the behavior occurs
within the same mixing session by specifying withdrawals to occur
simultaneously (by setting the same delay for two payout addresses). As
a result, the withdrawal transaction has three outputs: two of our ad-
dresses and one change address.

Overall, Anonymixer provides a unique case for mixers, as there are
some important differences when compared with previously popular
mixing services, such as ChipMixer or other researched mixers with poor
implementation, such as MixTum.

Chipmixer, for example, did not attempt to hide its operation in a
sufficient manner. Inputs were typically consolidated and tokenized in
one step, using a <many:many> transaction. The resulting tokens were
then distributed to the customers for their withdrawal; hard to trace but
easy to detect.

A different mixing service, MixTum, used consolidation transactions

to gather inputs (<many:1>). Afterward, customer withdrawals were
created using a long peel chain pattern that reused the same address
type, allowing for relatively easy tracking.

Anonymixer, on the other hand, uses more complicated mixing
schemes. Firstly, inputs into the service are sometimes mixed with in-
dependent users’ coins, making tracking any withdrawal transaction
difficult, as the pool of addresses is “diluted” by random users. Secondly,
transactions are created with a variety of parameter and feature com-
binations. Thirdly, withdrawal transactions may directly follow a de-
posit from a customer, disallowing peel chain tracking backward
through transaction history. Moreover, the peel chain cannot be tra-
versed forward if the withdrawal transaction only has a single output.

If we are to identify inputs and outputs into the Anonymixer, we need
a reliable method for traversal of the peel chains it creates. The success of
chain traversal is highly dependent on correctly identifying the change
address in each link.

While some well-knownmethods can work on Anonymixer in specific
cases, the encountered chains are often too ambiguous — fresh ad-
dresses on the outputs, same address types, roughly equal and rounded
output values, and similar future spending transactions. To gain more
vectors for change address identification and untangling of the peel
chains, we create a wallet fingerprint of the Anonymixer wallet, as it
is — by the author’s own testimony — created “from scratch”.

5. Wallet fingerprinting

Wallet fingerprinting aims to identify repeated and stable parameters
within transactions that a particular wallet generates and broadcasts to
the network. Fingerprinting generally applies only when the default
wallet settings are used, as many wallets expose these settings as con-
figurable to users, even though some wallet fingerprints stem from
limitations in the implementation and features. Creating a trustworthy
and detailed fingerprint allows us to track peel chains even on trans-
actions where other typical techniques, like address type matching,
value rounding, and clustering, would not be as reliable.

Fingerprints are constructed from a set of components and their
expected values. As the service uses its own wallet implementation, we
could not apply any known fingerprints associated with commonly used
wallets (Ishaana, 2023) (e.g., Bitcoin Core, Electrum), but we had to
create our own based on the previously described experiments. Since we
found that the components commonly used to create fingerprints are
insufficient for this use case, we expanded them in certain directions.

The following section describes how we approached our compo-
nents’ selection and often dives into technical details.

5.1. Component selection

Based on our findings, the mixer wallet seems to randomize several
parameters, such as nVersion, RBF, the value of nLockTime, and
whether the nLockTime value is applied or not. Other wallets are not
known to behave in such a manner; transactions generated by a single
wallet are relatively stable (even though an article (Consent, 2022)
states that the Bitcoin Core wallet creates transactions with different
parameters when RPC calls are used).

The selected components for the fingerprint are shown in Table 1. We
considered the following transactions for the construction of the
fingerprint that we collected in the previous section:

a) The withdrawal transaction from the deposit address (non-
CoinJoin);

b) The withdrawal transaction towards our withdrawal address; and
c) The withdrawal transaction from the change address.

Withdrawal transactions from the change addresses admittedly have
a lower amount of confidence. However, none exhibited any deviation
from the already known fingerprints regarding transaction parameters.

Fig. 8. Generic depiction of a peel chain. The initial value from address A0 is
being “peeled” by individual transactions with subsequently smaller output
values, sequential creating additional outputs O1, O2 and O3.
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Since these were the only non-CoinJoin transactions with multiple in-
puts that we assume the mixer created, it allowed us to inspect input
ordering.

5.2. Discussion on the extracted fingerprint

To get an idea of what transaction parameters and what combina-
tions are common, we scanned the last 1000 blocks around the time of
mixing in March of 2023. The results are shown in a graphical form in
Fig. 9 and with concrete values in Table 2.

At first glance, the service operator has certainly gone to some

lengths to provide an above-standard level of privacy. Typical finger-
printing candidates, such as nVersion and RBF, are not very useful in
isolation, as their value is set most likely randomly, blending in with the
rest of the transactions on the network. However, certain combinations
with other parameters are fairly uncommon, according to Table 2.

The parameter nVersion of 2 is common by itself. However, when
combined with explicitly disabled locktime (nSequence 0xFF..FF)
with nLocktime value of blockheight, the likelihood of encountering
such a transaction is very low. Yet, we detected this combination of
parameters. The same goes for cases where nVersion is 2, locktime is
explicitly enabled (nSequence 0xFF..FE) but nLocktime has a value
of 0. We observed this combination multiple times.

We therefore assume that the Anonymixerwallet generates the values
of transaction field nVersion, nSequence of inputs and nLockTime
seemingly independently or in wrong-at-the-time ratios, which results in
rare combinations that do not commonly appear in other transactions.
For example, nLockTime is set on the transactions to a blockheight
above 0, but disregarded by all its inputs, or vice-versa: Locktime is
enabled by inputs and set to 0 on the transaction level. The application
of the fingerprint is still probabilistic — a transaction matching the
fingerprint does not automatically belong to the mixer. Tables 1 and 2
convey the important observation: Anonymixer uses fairly uncommon
parameter combinations too frequently, allowing us to better identify
when the transaction is still likely created by the mixer and when it’s
likely to be a different user. We can further improve the likelihood of
correct identification by utilizing additional context. When examining a
link in a standard peel chain, we can try to apply the fingerprint in all
directions — withdrawal transaction on outputs and deposit transaction
of the input — giving us a much better chance, when combined with
other anomalies, to correctly differentiate between user and mixer
addresses.

Our fingerprint relies on data from addresses as well as transactions.
The total address search space is limited, since it focuses only on ad-
dresses with two transactions and only three transaction shapes. To limit
the number of matched addresses when consolidation is encountered,
we utilize no low-r-grinding and no input orderings for the classification.

The absence of low-r-grinding can also be used to classify transactions
with a single input. However, unless adjusted for probability, the result
can have a lot of false positives.

While we suspect that the service mostly uses P2WPKH addresses, we
cannot completely disregard addresses of other types as we assume they
could be used as another type of obfuscation of the peel chain.

5.3. Leveraging fingerprint to interpret peel chains

To test the capabilities of our fingerprinting approach, the following
section demonstrates its ability to navigate through a transaction peel
chain encountered in one of our experiments. This partial transaction

Table 1
Wallet fingerprint components, their observed values and quantities. Numerous
parameters are omitted. In terms of input/output orderings, we recognize value,
lexical and historical.

Abridged Wallet Fingerprint

General Transaction Parameters
nVersion {1, 2}
Tx types simple spend, move

consolidation
RBF {true, false}
Low-r-Grinding ⨯

Input/Output Attributes
Particular Input Ordering ⨯
Particular Output Ordering ⨯
Deterministic Change Index ⨯
Change Address Type Match ⨯

Handling of nLockTime
nSeq. 0xFFFFFFFF 6x none, 2x height
nSeq. 0xFFFFFFFE 7x none, 10x height
nSeq. 0xFFFFFFFD 6x none, 9x height
nSeq. other 0x none, 0x height
Unix time value ⨯

Address Attributes
Number of transactions 2
Blocks between transactions 66 ≤

Address Types P2WPKH, P2PKH
P2SH-P2WPKH

Fig. 9. Visual representation of transaction distribution based on height-lock
field values. In this figure, you can see the distribution of values in various
height-lock related fields. The innermost ring splits the transactions by value of
the nVersion field (1 or 2). The middle ring further splits the segments by the
nSequence field values (where ”No lock” corresponds to nSeq.==0xFF..

FF; ”Explicit” to nSeq.==0xFF..FE and ”RBF” to nSeq.<=0xFF..FD). The
outermost ring splits the segments by values of nLockTime itself. Concrete
counts and percentages can be seen in Table 2.

Table 2
Distribution of latest transactions based on their values of nVersion, nSe-
quence and nLockTime. The statistics were calculated based on all trans-
actions from blocks (mined over roughly one week) 799,000–800,008.
Abnormal combinations of parameters are highlighted.

nVer. nSeq. nLockTime Count Percent

v1 No lock 0 651 143 30.034618 %
v2 No lock 0 485 413 22.390157 %
v1 RBF 0 468 101 21.591624 %
v2 RBF Has value 190 996 8.809880 %
v2 RBF 0 186 733 8.613245 %
v2 Explicit Has value 96 894 4.469332 %
v1 No lock Has value 33 890 1.563210 %
v1 Explicit 0 28 056 1.294111 %
v2 Explicit 0 19 757 0.911311 %
v1 RBF Has value 5 141 0.237134 %
v1 Explicit Has value 1 802 0.083119 %
v2 No lock Has value 49 0.002260 %
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graph consists only of addresses that, unless stated otherwise, partici-
pated in only two transactions in total, are of the same type, and their
transactions split input values into roughly equal parts. Fig. 10 depicts
the transaction diagram for this particular case study.

We start on our address A0, where we received the withdrawal funds.
Since the withdrawal transaction is of shape <1:1> and the input
address A1 into this transaction participated in only two transactions,
we follow up to inspect this address. The first question is whether
address A1 could be a deposit address for some customers. To answer
this question, we move to inspect the transactions that deposited funds
onto it, transaction Tx1. Transaction Tx1 is of shape <1:2> and,
importantly, a) nVersion is 1 b) nSequence of input is final but
nLockTime value is set. This leads us to believe the mixer constructed
the transaction, as the combination is invalid. If we inspect the other
output address A2, we find it to have participated in multiple trans-
actions. Transactions spending UTXO associated with the address, i.e.,
constituted by the owner of the address, have unsurprisingly extremely
stable parameters. From its transactions, we also find that it participates
in dusting attacks13, leading us to believe it to be an output address of a
different customer and thus address funding the withdrawal transaction,
address A3 belongs to the mixer. If we follow the transaction that
deposited funds onto A3, transaction Tx2, we find the exact same pa-
rameters as with Tx1; now, however, with signature with high r-

value. If we follow the other output to address A4 and inspect its output
transaction, we find more standard parameters - as the nLockTime

value is not set and not enabled. The address A4 participated in only one
other transaction Tx3, sending the received UTXO to Wasabi Wallet
address A5, as we detect Wasabi CoinJoin by its special characteristics.
We thus deem address A4 as another mixer output, Tx2 as being created
by the mixer, and A6 as being under the control of the mixer. If we follow
our search towards the overall source of the funds, to transaction Tx4,
which parameters are different but still consistent with mixers wallet
fingerprint and follow its other output address A7 and we inspect its only
other transaction Tx5, we can identify transfer to the coinsbuy plat-
form14 using address A8 and to a different address A9, whose fingerprint
is consistent with address A7. We thus deem A7 as another customer of
the mixer service and a customer of the coinsbuy platform, Tx4 as being
constructed by the mixer, and A10 as being under the control of the
mixer aswell. We then move back to the main peel chain and follow the
transaction Tx6, to find the first really strong deviation from our
collected fingerprint – two inputs from the same address with otherwise
standard transaction parameters nVersion 2, enabled LockTime with
correct blockheight value, leading us to mark this transaction as not
generated by the service but by a customer. The exploration is thus
concluded as there are no more candidate transactions or addresses to
consider.

As we applied the above-described method to all of our captured
sessions, we identified a spread transaction (<1:many>) as a source of
certain chains. After inspection of the only input address, we found an
exit from JoinMarket, which we know is used by Anonymixer. When we
applied our fingerprint to other outputs from the spread transaction, we
identified multiple other origins of peel chains, all of which matched our
fingerprint exactly — many instances of specific rare combinations of
nVersion, nSequence and nLocktime.

As a result, we consider adding spread into the fingerprint as an
improvement for future experiments and evaluations.

6. Automation of the mixer address discovery process

As demonstrated in the previous section, using the collected wallet

fingerprint allows us to track seemingly perfect peel chains — chains
whose addresses are of the same type with no address reuse and whose
transaction split the input value into roughly equal parts. This makes the
detection of change address using standard approaches difficult. The last
step in showcasing the functionality of our proposed approach is to
automate the process. The goal is to:

a) identify addresses of the service;
b) identify withdrawal addresses of customers of the service;
c) identify deposit transactions into the mixer;

To gather blockchain data, we utilize a Bitcoin Core15 client and the
Mempool16 service, as these provide transaction links forward and
backward between inputs and outputs.

We use the addresses collected during the experiments as a seed for
our algorithm. Essentially, we perform forward and backward searches
from the seeds. We subject each encountered address and transaction to
the fingerprint, extracted in Section 5, and either continue the search or
mark the transaction or address as an anomaly, possible withdrawal or
deposit, depending on the context.

This search is enabled by the unique characteristics of the mixer it-
self. Since it is trying to hide its operation under the guise of standard
Bitcoin transactions — that have only a small number of inputs and
outputs — brute-force search can be considered a viable strategy.

6.1. Results

By traversing the transaction graph backward from the withdrawal
addresses, forward from the deposit addresses, and forward from the
change addresses, we were able to identify 344 service addresses and
461 customer addresses. The total volume of Bitcoin transferred through
the encountered peel chain was 0,8534 BTC, the earliest encountered
transaction was 17th January 2023, the latest 15th May 2024.

While we know that the estimated volume is far below the actual
value, it acts as the lower bound. As we were able to identify the ad-
dresses of hundreds of supposed customers, we also confirmed, using
OSINT17 methods, that on several occasions, the customer withdrawal
money could be followed directly into well-known online services, such
as HTX, coinsbuy or ChangeNOW. In several other cases, the output ad-
dresses we associated with reports on well-known community sites18

typically with scams or ransomware.
With this brief example, we aim to emphasize that we can traverse

peel chains both forward and backward through the transaction graph,
even though the visibility is still quite limited since ambiguous cases are
ignored. When <1:2> transaction is encountered from either direction,
one has to correctly determine which output is the change address and
which output is the peeled value. Wallet fingerprints can help us in cases
where clustering heuristics or commonly used change address detection
heuristics do not work, especially when the wallet uses such specific
combinations as is our case.

Because the studied peel chain often ended or started with consoli-
dation instead of <1:1> transaction, we were able to uncover tens of
addresses from a single seed.

Like numerous other studies, the absence of extensive testing/vali-
dation sets acts as a barrier, preventing us from accurately assessing this
method’s effectiveness. However, given that our assumptions about the
service are conservative, we can estimate the lower bounds.

One of the obvious limitations of our approach of analysis of Ano-
nymixer is the inability to detect isolated transfers: if a value is deposited
into the mixer and then immediately, without intermediate transaction,

13 Distribution of tiny amount of currency for tracking purposes. Wallets often
automatically involve available UTXOs in future transactions, exposing its
owner to the co-spent heuristic.
14 https://coinsbuy.com/.

15 https://bitcoincore.org/.
16 https://mempool.space/.
17 https://tokenscope.com/.
18 http://checkbitcoinaddress.com/.
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used in its whole for withdrawal for some other customer (<1:1>
changeless payment), no input or change address can be followed. In
some such specific cases that we got the chance to observe, the mixer
had no financial profit — change address provides a way for the mixer to
take its cut, either as profit or as a portion of some customer’s
payout — the traceability is limited, and so is the mixer’s profitability.

We believe that we encountered this exact scenario on several
occasions — our deposited value enlarged by the mixers fee was
deposited onto the mixers address and later, using changeless spend, used
to payout another customer with the same value we originally intended
to mix. The whole service fee was thus spent on the transaction fee.

This holds when the number of mixed coins is on the lower side of the
spectrum - as the service fee is calculated from the total amount being
mixed while the transaction fee is relatively constant.

To provide a performance comparison with existing approaches, all
the techniques discussed in Section 2 would need to be implemented and
tested on the same dataset. However, since our method — analysis of
uncommon parameters and subsequent construction of finger-
print — can work in tandem with the current methods, the performance
of peel chain tracking heuristic should only increase — as we simply
provide additional vectors to feed the heuristic to influence decisions.

7. Conclusion

Usage of the Anonymixer unique wallet fingerprint has proven to be a
valid approach, as we exploited its high variance in transaction pa-
rameters and automatized identification of involved addresses in mixing
rounds and peel chaining. Hence, wallet fingerprinting holds significant
potential for classification purposes, despite the limited exploration of
this concept in contemporary scientific literature. This approach appears
promising in several ways. For example, it could be employed: a) to
verify that a common-spent clusters do not contain irrelevant addresses;
b) to improve detection of spare-changes address within transactions; or
c) to provide an additional vector for correlation of blockchain trans-
actions with off-the-blockchain events.

Nevertheless, the generation of a fingerprint from a limited set of
approximately 40 transactions, with the objective of monitoring a spe-
cific service on the blockchain, represents a significant advance. The
techniques and approaches that we have presented can, and it is highly
probable that they will, be employed in the future to enhance the effi-
cacy of change address detection heuristics, thereby improving visibility
at the base layer of the Bitcoin network.

Raw data from mixing sessions are available to cybersecurity re-
searchers upon request and validation of serious and honest interest.
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Möser, M., Böhme, R., 2017. The price of anonymity: empirical evidence from a market
for Bitcoin anonymization. J. Cybersecur. 3 (2), 127–135. https://doi.org/10.1093/
cybsec/tyx007.
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