Towards Verification of Systems of Asynchronous Concurrent Processes

Marek Rychlý

Department of Information Systems, Faculty of Information Technology, Brno University of Technology

Outline

- Introduction
- Distributed information systems
- Asynchronous network model
- Process algebras (CCS, π -calculus, ...)
- Modified asynchronous network model
- Framework for modified network model
- Formal specification
- Formal verification
- Future research
- References

Introduction

- What will be the presentation about?
 - a design method supported by a framework
 - distributed (networked) information systems
 - an asynchronous communication
 - a network of communicating processes
 - a specification of communication architecture
- What won't be the presentation about?
 - a logic of information systems
 - process specification
 - distributed algorithms

Distributed Information Systems

- Present-day information systems are built as SW confederations (peer-to-peer networks)
- Many autonomous components
- Gateways (interfaces) to a middle-ware
- Middle-ware provides dynamic connections
 - according to functionality (available services)
 - according to free resources
 - according to policies of components

Asynchronous network model

- directed graph of communicating processes
- edges are communicating channels
- two operations:
 - asynchronous $send(m)_{i,j}$
 - synchronous $receive(m)_{i,j}$
- many types of channels:
 - "universal reliable FIFO channel"
 - "reliable reordering channel"
 - "channel with failures" (losses, duplications, …)

Asynchronous network model

- can be modelled as an I/O automaton
 - a labelled transition system model with output, internal and always enabled input actions and "a fair execution"
 - developed by Lynch and Tuttle, 1987

Process algebras

("process calculus", "process theory")

- algebraic approach to system of concurrent processes (high level of abstraction)
- formal verification
 - synchronization (critical sections)
 - liveliness, fair execution (deadlocks)
 - temporal logics (to describe properties of executions)
- Calculus of Communicating Systems (CCS) Milner, 80th and 90th years
- Communicating Sequential Processes (CSP) Hoare, 1984-85

π-calculus

(calculus of mobile processes)

- R. Milner, J. Parrow a D. Walker (1992): A Calculus of Mobile Processes
- CCS with dynamic comm. structures
- only two concepts:
 - agent: communicating process,
 - name: comm. channel, variable, data, ...
- key properties:
 - name passing
 - replication
- modifications:
 - polyadic, with replication, non-recursive, highorder, with name equality, ...

π -calculus: operations

- x < y > .P operation "send"
- x(y).P operation "receive"
- tau.P internal (hidden) action
- (x)P new name
- P|Q parallel composition
- *P*+*Q* non-deterministic choice
- $A(x_1,...,x_n)$ agent execution
- [x=y]P name equality (extension)
- !P replication (extension)

π-calculus: proofs

- Implementation of lambda-calculus (Robin Milner, 1992)
- Bisimulation equivalence:
 - early and late: input action after/before substitution (isn't congruent, Milner 1992)
 - open bisimulation: all actions (is congruent, Sangiorgy 1996)
- Proof of bisimulation equivalence in finite recursive π -calculus (Mads Dam, 1997)
 - auto-prover (Björn a Moller, 1994) The Mobility Workbench - A Tool for the π -Calculus

Modified asynchronous network model

- Original ANM: process and channel
- Decomposition of channel:
 - local interface ... "port"
 - network buffer ... "link"
- Translatable into original ANM

Framework for modified asynchronous network model

- Tool for modelling in modified network model
- white-box framework (and implementation library of components for black-box fmw.)
- Hierarchy and encapsulation of processes

Formal specification

- High level of abstraction in the model
 - focused on the communication
 - unknown semantics of atomic processes
- Systems implemented using the framework are compatible with modified network model
- Systems implemented using the framework can be translated into π -calculus
- We suppose "universal reliable FIFO channel" in formal specification (ideal)

Specification in π -calculus

- The atomic process is process of π -calculus
- The port is two channels (input and output)
- The link is expressed as π -calculus process, which connects input and output channels:

$$\mathrm{link}(p1_{in},\ ...,\ pn_{in},\ q1_{out},\ ...,\ qm_{out}) = \sum_{i=1}^{n}\ \sum_{j=1}^{m}\ qj_{out}(x).\overline{pi_{in}}\ x\ .\mathrm{link}(p1_{in},\ ...,\ pn_{in},\ q1_{out},\ ...,\ qm_{out})$$

• The composite process is a parametric process (a parallel composition of its internal processes) with the ports of a composite process as its parameters

Formal verification

- After translation into π -calculus in MWB
- Problem with infinite recursion (replication)
 - Can be replaced with a finite number of concurrent processes?
 - Is it possible to use some recycling mechanism?
- We can:
 - prove weak and strong open bisimulation equiv.
 - find deadlocks
 - simulate and test system
 (as "a black-box" and "a white-box")

Future research

Model:

- Elimination of an infinite recursion
- Influence of a network layer QoS on the model
- Relation with UML2 (design pattern Port)

Framework:

- Lesser dependence on the network model
- Framework implementation and case-studies
- Specification of SOA, CORBA Event Service, ...

References

- (1) Nancy A. Lynch. *Distributed Algorithms*. Morgan Kaufmann Publishers. San Francisco, CA, USA. 1996.
- (2) Robin Milner, Joachim Parrow, and David J. Walker. A calculus of mobile processes, I and II. *Information and Computation*, 100(1):1–40 and 41–77, 1992.
- (3) Victor Björn and Faron Moller. The Mobility Workbench a tool for the π -calculus. In David Dill, editor, *CAV'94: Computer Aided Verification*, volume 818 of *Lecture Notes in Computer Science*, pages 428–440. Springer-Verlag, 1994.
- (4) Ugo Montanari and Marco Pistore. Finite state verification for the asynchronous π-calculus. In *TACAS* '99: *Proceedings of the 5th International Conference on Tools and Algorithms for Construction and Analysis of Systems*, pages 255–269, London, UK. Springer-Verlag, 1999.
- (5) Mads Dam. Proof systems for π -calculus logics. In R. de Queiroz, editor, *Logic for Concurrency and Synchronisation*, Trends in Logic, Studia Logica Library, pages 145–212. Kluwer, 2003.