
AN AREA-EFFICIENT ALTERNATIVE TO ADAPTIVE MEDIAN FILTERING IN FPGAS

Zdenek Vasicek and Lukas Sekanina

Faculty of Information Technology

Brno University of Technology

Bozetechova 2, 612 66 Brno, Czech Republic

email: vasicek@fit.vutbr.cz, sekanina@fit.vutbr.cz

ABSTRACT

This paper presents a new approach to the FPGA implemen-

tation of image filters which are utilized to remove the salt-

and-pepper noise of high intensity (up to 70% of corrupted

pixels). The proposed solution combines image filters de-

signed by means of evolutionary algorithm with a simple

human-designed preprocessing and post-processing unit. It

provides the same filtering capability as a standard adaptive

median filter; however, using four times less Virtex slices.

1. INTRODUCTION

This paper presents a new approach to the FPGA implemen-

tation of image filters which are utilized to remove the salt-

and-pepper noise of high intensity (up to 70% of corrupted

pixels). The goal is to show that by an innovative combi-

nation of evolved designs and conventional designs we are

able to significantly reduce the overall implementation cost

on a chip in comparison to standard approaches based on so-

phisticated filtering schemes, such as adaptive medians [1].

We will solely deal with the images corrupted by the

shot noise, in particular salt-and-pepper noise in which the

noisy pixels can take only the maximum or minimum values

(i.e. 0 or 255 for 8-bit grayscale images). In most cases, this

type of noise is caused by malfunctioning pixels in camera

sensors, faulty memory locations in hardware, or errors in

the data transmission.

Traditionally, the salt-and-pepper noise is removed by

median filters. When the noise intensity is less than approx.

10% a simple median utilizing 3×3 or 5×5-pixel window is

sufficient. However, it was shown that evolutionary design

techniques are able to generate slightly better solutions than

standard medians for this noise intensity [2] (see Fig. 5j–n).

The images filtered by evolved filters are not so smudged

and the area on the chip can by reduced by approx. 60%.

When the intensity of noise is increasing (10-90% pix-

els are corrupted), simple median filters are not sufficient

and more advanced techniques have to be utilized. Among

others, adaptive medians provide good results and simulta-

neously, their hardware implementation is straightforward

[1]. However, as shown in Section 2, the problem is that

these advanced techniques require a considerably larger area

on a chip in comparison to simple median filters. The main

reason is that larger filtering windows have to be applied and

additional values (such as the maximum and minimum value

of the filtering window) have to be calculated.

Unfortunately, the evolutionary design approach stated

above which works up to 10% noise intensity does not work

for higher noise intensities. It is shown in this paper that a

bank of filters containing the evolved relatively simple fil-

ters which utilize only 3 × 3-pixel filtering windows is able

to accomplish the same task as the adaptive median filter uti-

lizing up to 7 × 7-pixel filtering windows; however, using a

significantly reduced resources.

Section 2 surveys implementation costs of various FPGA

implementations of image filters that can be used to sup-

press the salt-and-pepper noise. Section 3 introduces the

basic idea of the proposed method. As the proposed method

utilizes evolved image filters, Section 4 is devoted to the de-

scription of an evolutionary image filter generator which we

use to routinely evolve (i.e. design) image filters. While

the image filter generator is evaluated in Section 5.1, the

proposed bank of filters is evaluated and compared to con-

ventional solutions in Section 5.2. Obtained results are dis-

cussed in Section 6 and conclusions are given in Section 7.

2. THE COST OF CONVENTIONAL FILTERS

2.1. Standard Median Filters

Median-based non-linear filters play a prominent role among

the filters utilized to suppress the salt-and-pepper noise [3,

4, 5, 6]. There are two approaches to the implementation

of a standard median function: The first approach employs

comparators which return the minimum or maximum value

calculated from two input values. If the goal is to minimize

the number of comparators, an optimal implementation ex-

ists for some problem instances. As we will use 3 × 3 and

5 × 5 filtering windows, the 9-input median (used also in

Xilinx’s reference implementation by Smith [7]) and the 25-

input median [8] are important for us.

1-4244-1060-6/07/$25.00 ©2007 IEEE. 216

Number of slices max.

inputs optimal SN bitonic SN oe-merge frequency

9 (3x3) 268 297 289 305 MHz

25 (5x5) 1506 1706 1582 305 MHz

49 (7x7) unknown 4815 4426 305 MHz

Table 1. Results of synthesis for common median circuits.

The second approach is based on sorting networks (SN)

which consist of compare-and-swap operations (also referred

to as comparators) [9]. Sorting networks can be designed

and optimized with the aim of reducing the number of com-

parators or delay. For a small number of inputs, the optimal

(ad hoc) implementations are known. The comparator count

and delay are considered as criteria for a given number of

inputs. In order to design more complex SNs, general al-

gorithms have been proposed. Among them, bitonic sort-

ing and odd-even merge sorting provide the best results [9].

Then, effective implementations of n-input medians are ob-

tained by pruning n-input SNs.

Table 1 compares the cost of pipelined implementations

of mentioned median circuits. Note that in this paper, all

results of synthesis are given for Virtex II Pro XC2vp50-7

FPGA which contains 23616 slices. We can observe that

odd-even merge sorting requires fewer slices than bitonic

sorting. Figure 5c shows that when the noise level is in-

creasing, some details and edges of the original image are

smeared by the median filter [10]. Although larger filtering

windows allow removing more shots they produce consider-

ably more smudged output images (see Fig. 5d, m).

2.2. Adaptive Median Filters

The adaptive median filter provides significantly better re-

sults than standard median filters especially for images cor-

rupted with high noise intensity [1]. While many FPGA im-

plementations exist for standard median filters, we have not

found any FPGA implementation of the adaptive median fil-

ter in literature. Figure 1 shows the adaptive median filter

we designed and implemented for purposes of comparison.

The filter operates with a kernel of Smax×Smax pixels. Let

Sxy denote the processed (i.e. central) pixel. The kernel is

processed by a set of SNs with 3×3, 5×5, . . . , Smax×Smax

inputs. Each SN provides the minimum, maximum and me-

dian value. Buffers are used to synchronize the outputs of all

SNs and Sxy . The implementation is pipelined and tries to

minimize the number of stages. Hence it is useful to utilize

the odd-even merge SN which exhibits smaller delay. The

output block (which is a simple combinational circuit) se-

lects the output value according to the algorithm described

in [1]. Table 2 compares the cost of adaptive median which

utilizes up to 5 × 5 and 7 × 7 filtering window. The high

visual quality of filtered images (see Fig. 5f, g) correlates

with the high implementation cost.

SN bitonic SN oe-merge Latency

Smax # slices max. freq # slices max. freq [stages]

5x5 2220 305 MHz 2024 303 MHz 15

7x7 7297 302 MHz 6567 298 MHz 21

Table 2. Results of synthesis for adaptive median circuits.

filter
kernel

input
x,y

buffer

system_latency

sorting network 3x3

sorting network Smax x Smax

sorting network 5x5

buffer

output
pixel

SN9_latency

SN25_latency

buffer

x−1,y

x−1,y−1

x−N/2,y+N/2

x,y−1

x−N/2+1,y+N/2

S
S
S
S

S
S

x−N/2+2,y+N/2S

N x N

(Smax x Smax) logic

Fig. 1. HW implementation of adaptive median filter

2.3. Measures of the Visual Quality

The visual quality of filtered images is numerically expressed

by the peak signal-to-noise ratio (PSNR) which is calculated

as

PSNR = 10 log
10

2552

1

MN

∑
i,j(v(i, j) − w(i, j))2

where N × M is the size of image, v denotes the filtered

image and w denotes the original image. Alternatively, the

mean difference per pixel (mdpp) can be utilized

mdpp =
1

MN

M∑

i=1

N∑

j=1

|v(i, j) − w(i, j)|.

3. PROPOSED METHOD

In order to create a salt-and-pepper noise filter which gen-

erates filtered images of the same quality as an adaptive

median filter and which is suitable for pipelined hardware

implementation in FPGA, we propose to combine several

simple image filters (utilizing the 3 × 3 window) that are

designed by an evolutionary algorithm (EA). As Figure 2

shows the procedure has three steps:

(1) We analyzed various evolved filters reported in [2]

and recognized that they have problems with the large dy-

namic range of corrupted pixels (0/255). A simple solution

to this problem is to create a component which inverts all

pixels with value 255, i.e. all shots are transformed to have

a uniform value (i.e., 0). This is easy to implement in hard-

ware by a comparator.

(2) The preprocessed image then enters a bank of n fil-

ters which operate in parallel. We selected n evolved fil-

ters which produce different results and which exhibit better-

than-average filtering quality and utilized them in the bank.

217

Note that all these filters were designed by EA using the

same type of noise and training image and with the same

aim: to remove the 40% salt-and-pepper noise.

(3) Finally, the outputs coming from banks 1 . . . n are

combined by n-input median filter which can be easily im-

plemented using comparators [9]. As the proposed system

naturally forms a pipeline, the overall design can operate at

the same frequency as a simple median filter.

Input image

Filtered
pixel

I0

I1

I2

I3

I5

I4

I8

I7

I6

Median
filter

Evolved
Filter

F1

Evolved
Filter

Evolved
Filter

F2

Fn

O0

O1

On

Pre−
processing

filter

Fig. 2. A new architecture for salt-and-pepper noise removal

4. EVOLUTIONARY IMAGE FILTER GENERATOR

This section describes the system we employed to quickly

design image filters which can be used in the bank of fil-

ters. The system consists of a genetic unit, array of reconfig-

urable elements and fitness calculation unit. The corrupted

image is processed by a pipelined array of reconfigurable

elements (called Virtual Reconfigurable Circuit (VRC) here

[2]) whose configuration is generated by the genetic unit.

While candidate filters are created and evaluated using a user

logic available on the FPGA, the genetic operations are car-

ried out in the PowerPC processor which is available as a

hard core on the same FPGA. This type of evolvable hard-

ware implementation was introduced in [11].

4.1. Image Filters in VRC

Every image operator is considered as a digital circuit of

nine 8-bit inputs and a single 8-bit output, which processes

gray-scaled (8-bit/pixel) images (see Fig. 3 top).

Fig. 3 also shows a corresponding VRC which consists

of 2-input Configurable Logic Blocks (CFBs), denoted as

Ei, placed in a grid of 8 columns and 4 rows. Any input of

each CFB may be connected either to a primary circuit input

or to the output of a CFB, which is placed anywhere in the

preceding column. Any CFB can be programmed to imple-

ment one of functions given in Table 3. All these functions

operate with 8-bit operands and produce 8-bit results. These

functions were recognized as useful for this task in [2]. The

reconfiguration is performed column by column. The com-

putation is pipelined; a column of CFBs represents a stage

of the pipeline. The configuration bitstream of VRC which

is stored in a register array conf reg consists of 384 bits. A

single CFB is configured by 12 bits, 4 bits are used to select

the connection of a single input, 4 bits are used to select one

Image
filter

Input image Filtered image
I0

I1

I2

I3

I5

I4

I8

I7

I6

conf_reg 0

E

col 0

conf_reg 2 conf_reg 7

conf

PE
INPUT

CONF

OUT

MUXA

MUXB

A

B

Y

...

...

D

E

2

3

D

E

col 7

1

E

3

E

col 6

1

2

E

D

...

F0

F1

Fk

...

A

B

Y

MUXY

conf

I0 − I8

0

1

E

E

0

E

2

E

0

E

E

3

Fig. 3. Example of a candidate image filter representation

by means of virtual reconfigurable circuit (bottom)

Table 3. List of functions implemented in each CFB
code function description code function description

0 255 constant 8 x � 1 right shift by 1

1 x identity 9 x � 2 right shift by 2

2 255 − x inversion A swap(x, y) swap nibbles

3 x ∨ y bitwise OR B x + y + (addition)

4 x̄ ∨ y bitwise x̄ OR y C x +S y + with saturation

5 x ∧ y bitwise AND D (x + y) � 1 average

6 x ∧ y bitwise NAND E max(x, y) maximum

7 x ⊕ y bitwise XOR F min(x, y) minimum

of the 16 functions. Evolutionary algorithm directly oper-

ates with configurations of the VRC; simply, a configuration

is considered as a chromosome.

4.2. Evolutionary Algorithm

The initial population of eight individuals is generated ran-

domly. Then, two offspring are generated from each parent

using a bit-mutation operator. A new population is selected

from the eight parents and their sixteen offspring. We uti-

lized a deterministic selection in which the eight-best scored

individuals are selected as new parents. The evolutionary al-

gorithm utilizes a single genetic operator — mutation, which

is applied with the probability of 4.7-6.3% per bit. This mu-

tation intensity was experimentally confirmed as the most

suitable. No crossover operator is utilized in this type of EA

[2].

218

4.3. Fitness Calculation

The fitness calculation is carried out by the Fitness Unit

(FU). The corrupted image, original image and filtered im-

age are stored in external SRAM memories which are ac-

cessible via memory controllers implemented in FPGA. The

pixels of corrupted image u are loaded from external SRAM1

memory and forwarded to inputs of VRC. Pixels of filtered

image v are sent back to the Fitness Unit, where they are

compared with the pixels of original image w which is stored

in another external memory, SRAM2. Filtered image is si-

multaneously stored into the third external memory, SRAM3.

The design objective is to minimize the difference between

the filtered image and the original image, i.e. the fitness

value is calculated for M ×N -pixel image (note that border

pixels are ignored) as

fitness =
M−2∑

i=1

N−2∑

j=1

|v(i, j) − w(i, j)|.

4.4. Top Level Entity

As Fig. 4 shows, the proposed architecture is completely im-

plemented in a single FPGA (except the SRAM memories).

All components (except the VRC) are connected to the Lo-

calBus.

In order to maximize the overall performance, the CU

(Control Unit) plays the role of master and controls the en-

tire system. In particular, it starts/stops the evolution, de-

termines the number of generations and other parameters of

search algorithm and generates control signals for the re-

maining components.

FPGA

PPC

VRC CUFU

MEM
PMI

Population
Memory

PowerPC
Processor

Fitness
Unit

Virtual
Reconfigurable

Cicuit

Control
Unit

Memory
Interface

SRAM1

SRAM2

SRAM3

Fig. 4. A system for image filter evolution in FPGA

Upon request, the PowerPC generates a new candidate

individual, i.e. it is idle in its main loop. Program memory

of the PowerPC is implemented using on-chip Block RAM

(BRAM) memories and connected to the LocalBus in or-

der to send/read programs to/from an external PC which is

connected with FPGA via a PCI bus. The population of can-

didate configurations is stored in on-chip BRAM memories.

The population memory is divided into eight banks; each of

them contains a single configuration bitstream of VRC. An

additional bit (associated with every bank) determines data

validity; only valid configurations can be evaluated. In order

to overlap the evaluation of a candidate configuration with

generating a new candidate configuration, at least two mem-

ory banks have to be utilized. While a circuit is evaluated, a

new candidate configuration is generated. A new configura-

tion is utilized immediately after completing the evaluation

of the previous circuit.

The PMI (Population Memory Interface) component con-

sists of two subcomponents working concurrently. The first

subcomponent, controlled by the CU, reconfigures the VRC

using configurations stored in the population memory. The

second subcomponent is responsible for sending the fitness

value to the PowerPC processor. This process is controlled

by the FU. The PMI component also provides an interface

to the population memory via LocalBus.

The evaluation of candidate configurations is pipelined

in such manner as there are no idle clock cycles. Therefore,

time of evolution can be expressed as

tevol = Q(M − 2)(N − 2)
1

f

where Q is the number of evaluations, N ×M is the number

of pixels and f is the operation frequency.

Table 4. Results of synthesis of the image filter generator
VRC IO blocks BRAM Slices DFF

Available 852 232 23 616 49 788

4 × 8 CFBs 602 12 4 591 3 638

used 70% 5% 20% 7%

In order to implement the proposed evolutionary image

filter generator, we used a COMBO6X card. Results of syn-

thesis are summarized in Table 4. While the PowerPC works

at 300 MHz, the logic supporting the PowerPC works at 150

MHz. The remaining FPGA logic (including VRC and FU)

works at 50 MHz. Experimental results show that approx-

imately 3,000 candidate filters can be evaluated per second

(N = M = 128) which is 22 times faster than the same

algorithm running at the Celeron@2.4GHz.

Table 5. Experimental results for the training Lena image

(320,000 evaluations allowed in each run)
corrupted bits runs mdpp

image mutated min max mean std. dev.

5%-noise 18 64 0.333 3.450 2.010 1.240

10%-noise 24 349 0.828 7.390 2.650 2.190

20%-noise 20 139 0.870 12.10 2.680 1.330

5. EXPERIMENTAL RESULTS

5.1. Evaluation of the Image Filter Generator

This section illustrates main features of the implementation.

The objective of this experiment is to evolve 3 × 3 salt-

and-pepper noise filters. As a training image we utilized

219

original
image

median
filter 3x3

median
filter 5x5

evolved
filter

adaptive
median 5x5

adaptive
median 7x7

proposed
3−bank filter

proposed
5−bank filter

5% noise evolved
filter

original
image

median
filter 3x3

median
filter 5x5

a) c) d)40% noiseb)40% noiseb) e) f) g)

k) l) m) n)h) i) j)

Fig. 5. Filtering the 40% noise (a–i) and filtering the 5% noise (j–n)

Table 6. Comparison of PSNR of the best-evolved filters

and 3×3-median filter on a test set of 256×256-pixel images
test 5% noise 10% noise

image evolved median evolved median

airplane 37.617 29.303 32.006 28.557

bird 42.692 38.242 36.675 36.990

bridge 35.522 26.040 30.699 25.662

camera 33.776 26.823 32.040 26.245

goldhill 37.503 27.927 32.776 27.524

lena 37.362 30.381 31.901 29.739

a 128 × 128-pixel version of Lena image which contains a

given type of noise in some regions. Table 5 summarizes

results of evolution for hundreds of independent runs. Ta-

ble 6 presents results for a set of test images and compares

evolved filters with a standard 3 × 3 median filter. Fig 5j–n

shows an example—the bridge image.

5.2. Evaluation of the Bank of Filters

In order to evolve filters for the bank, a training 128 × 128-

pixel image which was partially corrupted by 40% salt-and-

pepper noise was utilized. Evolution was repeated 100 times;

1.5 million evaluations were performed in each run. Ac-

cording to the chromosomes of the five best-scored filters

we created corresponding VHDL models and synthesized

them. The first part of Table 7 shows that the implementa-

tion cost of evolved filters is much lower than the cost of

3 × 3 median circuit. Figure 6 shows three evolved filters.

The proposed approach and adaptive median filters are

compared on several images of size 256× 256 pixels which

contain the salt-and-pepper noise with the intensity of 5%,

10%, 20%, 40%, 50% and 70% corrupted pixels. Table 8

summarizes results obtained for selected test images and two

versions of the adaptive median filter and two versions of

the bank filter (which contain the filters from Table 7). The

higher PSNR, the better results.

Table 7. Result of synthesis for evolved filters utilized in the

bank (filter1-5) and for the whole bank filters
filter # slices area max. frequency latency

filter1 156 0.7% 316 MHz 8

filter2 199 0.8% 318 MHz 8

filter3 137 0.6% 308 MHz 8

filter4 183 0.8% 321 MHz 8

filter5 148 0.6% 320 MHz 8

filter # slices area max. frequency latency

3-bank 500 2.1% 308 MHz 11

5-bank 843 3.6% 305 MHz 13

Surprisingly, only three filters utilized in the bank are

needed to obtain a bank filter which produces images of at

least comparable visual quality to the adaptive median filter.

This fact is demonstrated by Figure 5f–i where the visual

quality of the images filtered by the adaptive median and

3-bank filter is practically undistinguishable.

6. DISCUSSION

An obvious question is: How is it possible that three (five,

respectively) filters evolved with the aim of removing 40%-

salt-and-pepper noise are able to suppress the salt-and-pepper

noise with the intensity up to 70%? Moreover, none of these

filters does work sufficiently in the task which it was trained

for (the 40% noise). Our explanation is that although these

filters perform the same task, they operate in a different way.

While a median filter gives as its output one of the pixels of

the filtering window, evolved filters sometime produce new

pixel values. By processing these n-values in the n-input

median, the shot is suppressed. We tested several variants of

evolved filters in the bank but never observed a significant

degradation in the image quality.

The proposed approach was evaluated on a class of im-

ages which belong to the category of “home photo gallery”.

Future work will be devoted to testing the proposed filtering

220

Table 8. PSNR for adaptive median filters with the kernel

size up to 7 × 7 and bank filters containing 3 and 5 filters
5 × 5 Adaptive median filters

img/noise 5% 10% 20% 40% 50% 70%

goldhill 31.605 31.155 30.085 26.906 24.290 15.859

bridge 29.936 29.474 28.064 24.993 22.567 14.781

lena 34.434 33.665 31.210 27.171 24.433 15.468

pentagon 33.108 32.767 31.460 28.235 25.217 16.315

camera 30.862 30.367 28.560 25.145 22.675 14.973

7 × 7
img/noise 5% 10% 20% 40% 50% 70%

goldhill 31.605 31.155 30.085 27.315 25.961 20.884

bridge 29.943 29.474 28.058 25.177 23.710 19.060

lena 34.425 33.655 31.207 27.529 25.984 20.455

pentagon 33.108 32.767 31.460 28.621 27.175 21.654

camera 30.862 30.367 28.560 25.298 23.852 19.242

3-bank Bank filters

img/noise 5% 10% 20% 40% 50% 70%

goldhill 36.614 33.759 30.619 27.716 25.867 19.091

bridge 34.064 31.458 28.992 25.830 24.282 18.333

lena 31.424 30.304 28.162 25.684 24.137 18.324

pentagon 37.445 34.631 31.890 28.681 26.577 18.437

camera 34.252 30.576 28.185 25.284 23.720 17.850

5-bank

img/noise 5% 10% 20% 40% 50% 70%

goldhill 37.216 34.392 31.131 27.966 25.965 19.079

bridge 34.828 32.321 29.714 26.124 24.441 18.327

lena 31.448 30.393 28.424 25.881 24.203 18.314

pentagon 38.017 35.201 32.411 28.945 26.683 18.435

camera 34.622 31.091 28.740 25.576 23.919 17.845

scheme on other types of images. Anyway, results obtained

for this class of images are quite promising from the appli-

cation point of view. We can reach the quality of adaptive

median filtering using a 3-bank filter; however four times

less resources are utilized. This can potentially lead to a sig-

nificant reduction of power consumption of a target system.

Moreover, as the adaptive medians require larger filtering

windows than bank filters they also require more logic to

implement input FIFOs. For example, the adaptive median

with kernel size up to 7 × 7 needs seven input FIFOs. Each

FIFO stores the whole row of the filtered image. This over-

head is not included in the implementation cost of filters in

Tables 2 and 7. Note that the proposed filter bank, which

can comprise an arbitrary number of evolutionary designed

filters working in parallel, needs three input FIFOs only.

7. CONCLUSIONS

The proposed solution combines image filters designed by

means of evolutionary algorithm with a simple human de-

signed preprocessing and post-processing unit. It provides

the same filtering capability as a standard adaptive median

filter; however, using four times less slices. As a promis-

ing approach for future investigations, it seems to combine

evolved designs with conventional designs. In future work,

we would like to test the proposed scheme for other types of

noise.

10 9

15 12 6 20

2 21

4 22 10 26

14 27

14 28

1 30 3 34

10 36

8 38

6 39

9 40

14 10

0 11

14 13

11 14

4 15

14 16

5 17

11 18

5 19 15 23

14 24

14 25 9 29

1 31

0 32

11 33

14 35

15 37

0 1 2

3 4 5

6 7 8

0

Fig. 6. Example of evolved filter for the 40% salt-and-

pepper noise utilized in the 3-bank filter

Acknowledgements

This research was partially supported by the Grant Agency

of the Czech Republic under No. 102/07/0850 Design and

hardware implementation of a patent-invention machine and

the Research Plan No. MSM 0021630528 Security-Oriented

Research in Information Technology.

8. REFERENCES

[1] H. Hwang and R. A. Haddad, “New algorithms for adaptive

median filters,” in Proc. SPIE Vol. 1606, Visual Communica-

tions and Image Processing ’91, Nov. 1991, pp. 400–407.

[2] L. Sekanina, Evolvable components: From Theory to Hard-

ware Implementations, ser. Natural Computing. Springer-

Verlag Berlin, 2004.

[3] N. H. Yung and A. H. Lai, “Novel filter algorithm for remov-

ing impulse noise in digital images,” in Proc. SPIE Vol. 2501,

p. 210-220, Visual Communications and Image Processing

’95, Lance T. Wu; Ed., L. T. Wu, Ed., Apr. 1995, pp. 210–

220.

[4] L. Bar, N. Kiryati, and N. Sochen, “Image deblurring in the

presence of salt-and-pepper noise,” in Scale Space, 2005, pp.

107–118.

[5] M. Nikolova, “A variational approach to remove outliers and

impulse noise,” J. Math. Imaging Vis., vol. 20, no. 1-2, pp.

99–120, 2004.

[6] S. A. Fahmy, P. Y. K. Cheung, and W. Luk, “Novel fpga-

based implementation of median and weighted median filters

for image processing.” in Proc. of the 2005 Int. Conf. on Field

Programmable Logic and Applications (FPL). IEEE, 2005,

pp. 142–147.

[7] J. L. Smith, “Implementing median filters in xc4000e fpgas,”

XCell, vol. 23, no. 1, p. 16, 1996.

[8] N. Devillard, “Fast Median Search: An ANSI C Implemen-

tation,” 1998, http://ndevilla.free.fr/median/median.pdf.

[9] D. E. Knuth, The Art of Computer Programming: Sorting and

Searching (2nd ed.). Addison Wesley, 1998.

[10] E. R. Dougherty and J. T. Astola, Eds., Nonlinear Filters for

Image Processing, ser. SPIE/IEEE Series on Imaging Science

& Engineering. SPIE/IEEE, 1999.

[11] Z. Vasicek and L. Sekanina, “An evolvable hardware system

in Xilinx Virtex II Pro FPGA,” Int. J. Innovative Computing

and Applications, vol. 1, no. 1, pp. 63–73, 2007.

221

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

