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Abstract. In this paper, an evolutionary approach is used to design
multiple constant multipliers (MCMs). As these circuits can be com-
posed of adders, subtractors and shifters, they perform a linear trans-
form. An important consequence is that only a single input value is
sufficient to completely evaluate a candidate circuit independently of its
size and the bit width of the datapath. Proposed method is able to com-
pete with well-optimized heuristics in particular problem instances. This
paper also deals with a hardware acceleration of the method in FPGA
which provides the speedup of two orders of magnitude in comparison
with a conventional PC.

1 Introduction

By evolvable hardware we mean the usage of evolutionary algorithms (EA) either
for hardware design or for dynamic hardware adaptation [1]. While in the first
case the goal is to automatically generate innovative solutions (i.e. the evolu-
tionary algorithm is used only in the design phase of a product), the second case
deals with the online modification of a reconfigurable structure. The objective
is to improve the performance of the system working in a changing environment
or repair the system when faults are present. This paper is devoted to the evolu-
tionary design of digital circuits in which complete circuit structures are evolved.
We will not deal with evolutionary circuit optimization in which only values of
some parameters of a human-predesigned solution are sought by evolutionary
algorithm.

1.1 Evolutionary Circuit Design

In some areas, innovative circuits were designed using EAs, see for example
[2, 3, 4, 1]. In this context, the term innovative means that the solution exhibits
a better quality in some aspects wrt existing designs of the same category. For
example, the solution would occupy a smaller area on a chip, compute faster,
provide a better precision, reduce energy consumption, increase the reliability
etc.

However, the evolutionary circuit design is not competitive in all design prob-
lems because of the so called scalability problems. From the viewpoint of the



scalability of representation, the problem is that long chromosomes which are
usually required to represent complex solutions imply large search spaces that
are typically difficult to search. In many cases, even a well tuned evolutionary
algorithm fails to find an innovative solution in a reasonable time.

Another problem is related to the fitness calculation time. In case of the
combinational circuit evolution, the evaluation time of a candidate circuit grows
exponentially with the increasing number of inputs (assuming that all possible
input combinations are tested in the fitness function). Hence, the evaluation
time becomes the main bottleneck of the evolutionary approach when complex
circuits with many inputs are evolved. This problem is known as the problem
of scalability of evaluation. In order to reduce the time of evaluation, various
techniques have been adopted:

– Only a subset of all possible input vectors is utilized. That is typical for
evolution of filters, classifiers or robot controllers [1]. Unfortunately, nobody
can guarantee a correct circuit behavior for those input combinations which
were not used during evolution. Hence, evolved circuits are validated at the
end of evolution using a test set — a representative set of input vectors which
differ from the training set.

– In some cases it is sufficient to evaluate only some structural properties of
candidate circuits which can be done with a reasonable time complexity. For
example, because the testability of a candidate circuit can be calculated in
a quadratic time, very large benchmark circuits with predefined testability
properties can be evolved [5].

An obvious conclusion is that the perfect evaluation procedures are appli-
cable only for small circuits. On the other hand, when more complex circuits
are evolved, only an imperfect fitness calculation method can be used. (Note
that although some resulting circuits can not be considered as general solutions,
they can be quite effective from the practical point of view.) This strongly con-
trasts with conventional methodologies which are able to solve large instances
of synthesis problems and which ensure that all circuits are perfectly functional.

1.2 Linear Transforms

A question is whether one can escape, at least for some problems, from this
conclusion. In order to evolve large circuits and simultaneously perform a perfect
evaluation, we have to identify such design problems for which the evaluation
of a candidate solution requires either constant or linear time with respect to
the number of inputs/components. We can observe that if a candidate circuit
consists only of linear operators (such as addition, subtraction, shift etc.) and
the goal is to implement a linear transform, then the circuit can be completely
evaluated using a single test vector independently of the number of inputs and
the bit width of the datapath.

A multiple constant multiplier (MCM) is a digital circuit which multiplies
its single input x by N constants and so it generates N output products. As



this circuit can be composed of adders, subtractors and shifters, it is very useful
for low-power implementations of FIR filters in which the input signal has to be
multiplied by different, but constant values [6]. An important characteristics of
MCM design is that because the transform is linear, only a single input value of x
(e.g. x = 1) is sufficient to completely evaluate a candidate circuit. This unique
feature has not been utilized in the evolvable hardware field although there
are many works dealing with the evolutionary design of multiplierless filters (in
which the fitness calculation is based on sampling the frequency characteristics
and calculating the difference from the required frequency characteristics [7, 8])
and constant-coefficient multipliers (in which a symbolic verification algorithm
is used [3, 9]).

Finding the optimal solution of the MCM problem, i.e., the one with the
fewest number of components (in particular, additions and subtractions) is known
to be NP-complete. A very efficient heuristic algorithm for the MCM problem
was recently published [10]. This is a graph-based algorithm which can handle
problem sizes as large as one hundred 32-bit constants. The algorithm can be
considered as the state of the art method for the MCM design problem.

1.3 The Aim of This Paper

The goal of this paper is to show that when a candidate solution can be evalu-
ated in a linear time (or in a constant time when the evaluation is parallelized in
hardware), very large and simultaneously precisely-evaluated circuit designs can
be evolved. In particular, an evolutionary algorithm loosely inspired by Carte-
sian Genetic Programming (CGP) [2] is employed to generate innovative im-
plementations of MCMs. In comparison with the heuristics [10], the proposed
evolutionary-based approach is able to reduce the delay of MCMs and the num-
ber of shift operators.

In order to accelerate the evolutionary design as much as possible, a complete
evolutionary system was implemented in an FPGA. As the proposed system is
able to evaluate a candidate circuit in a single clock cycle, it is necessary to
generate a new chromosome in a single clock cycle. An evolutionary algorithm
implemented as a program running on an on-chip processor (Microblaze or Pow-
erPC), however, is not able to achieve this frequency. Hence a new evolutionary
algorithm has to be implemented as an application-specific circuit in the FPGA.
This implementation provides a significant speedup of the evolutionary MCM
design in contrast to a conventional PC.

The paper is organized as follows. Proposed evolutionary approach is intro-
duced in Section 2. Section 3 describes the FPGA solution used to accelerate the
evolutionary design process. Results of experiments are presented in Section 4.
Conclusions are given in Section 5.

2 Proposed Method

The goal is to synthesize a multiple constant multiplier which generatesN output
values c1x . . . cNx, where c1 . . . cN are given constants and x is the only input



variable. The circuit is composed of linear components – adders, subtractors
and shifters. In addition to a perfect functionality, the number of components
is optimized. The problem is approached using evolutionary algorithm in which
the problem representation is borrowed from the CGP.

In CGP, a candidate circuit is represented as an array of u (columns) × v
(rows) of programmable elements (nodes). The number of inputs, ni, and out-
puts, no, is fixed. For MCMs, ni = 1 and no = N . Feedback is not allowed.
Each node input can be connected to the output of a node placed in the pre-
vious L columns or to some of program inputs. The L-back parameter, in fact,
defines the level of connectivity and thus reduces/extends the search space. For
example, if L=1 only neighboring columns may be connected; if L = u, the full
connectivity is enabled. Each node is programmed to perform one of functions
defined in the set Γ . For MCMs, Γ includes the addition, subtraction, shifts
and identity function. These functions as well as all connections are used over b
bits, where b = 16 in our case. As Figure 1 shows, while the size of chromosome
is fixed, the size of phenotype is variable (i.e. some nodes are not used). Every
individual is encoded using u× v × 3 + no integers.
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Fig. 1. Example of a candidate circuit. CGP parameters are as follows: L = 3, u = 3,
v = 2, Γ = {add (0), sub (1), 1b-shift (2), 2b-shift (3)}. Nodes 2, 4 and 5 are not
utilized. Chromosome: 0,0,2, 0,0,3, 1,0,0, 1,2,0, 3,1,1, 3,0,0, 3, 6. The last two integers
indicate the outputs of the MCM. The input x is encoded as 0.

EA operates with the population of λ individuals. The initial population
is randomly generated. Every new population is generated using tournament
selection and mutation. In the fitness calculation, the goal is to minimize the
difference between circuit outputs and required products. When a functionally
perfect solution is obtained, the number of components is optimized. The evo-
lution is stopped when the best fitness value stagnates or the maximum number
of generations is exhausted.



3 FPGA Acceleration

The accelerator consists of a genetic unit, array of reconfigurable elements and
fitness calculation unit. Instead of a direct reconfiguration of the FPGA, so-called
Virtual Reconfigurable Circuit (VRC) is reconfigured. VRC is an application-
specific reconfigurable circuit implemented on the top of the FPGA according to
scheme proposed in [11]. The VRC, in fact, implements the representation used
in CGP. The main execution loop (selection, genetic operations and fitness eval-
uation) is carried out in the FPGA while the initialization and user interface are
controlled from the PC. The PC allows to fully control the evolutionary process
in FPGA even during the execution. For example, it is possible to determine
and set a new probability of mutation on-the-fly.
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Fig. 2. VRC developed for the multiple constant multiplier design problem

3.1 Evaluation of Candidate Circuits

A candidate circuit is represented using a bitstream which defines the configura-
tion of VRC. Figure 2 shows an example of VRC which consists of Configurable
Logic Blocks (CFBs), denoted as E, placed in a grid of 4 columns and 11 rows.
The inputs of each CFB can be connected either to the input value x or to the
output of a CFB, which is placed anywhere in the preceding column. Each CFB



can be configured to implement one of the functions: addition, subtraction, bi-
nary shifts or identity. Each function accepts 16-bit operands and produces a
16-bit result.

In contrast with CGP, the outputs are not configurable. The number of out-
puts is equal to the number of CFBs. An additional mask signal is provided
to determine utilized outputs. The reconfiguration is performed column by col-
umn. The computation is pipelined; a column of CFBs represents a stage of the
pipeline. The configuration bitstream is stored in a register array which can hold
up to 512 bits.
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Fig. 3. Fitness calculation circuit

Figure 3 shows a circuit which is used to calculate the fitness value. As this
circuit can be also pipelined, it naturally extends the pipeline existing in the
VRC. The fitness value can be obtained in one clock cycle.

In order to optimize the cost of a candidate circuit (i.e. the number of used
CFBs), a simple method was used. This method utilizes the fact that each CFB
can implement a single wire whose implementation cost is zero. As soon as a
functionally-perfect solution is found, the objective of evolutionary algorithm is
to maximize the number of CFBs which operate as wires. The configuration of a
single column of VRC is analyzed using comparators which return 1 in the case
that a particular CFB is configured as a wire. The results of comparators are
added up using a tree of adders. The sum represents the size of phenotype which
is utilized as a part of the fitness value. This calculation is performed when the
column of CFBs is configured.



3.2 Genetic Engine

In order to feed the VRC and fitness unit with new candidate circuits optimally,
it is necessary to create a genetic unit as a specific circuit in the FPGA. Although
various implementations of EAs were designed for FPGAs (e.g. [12]), we propose
a new genetic unit which is able to generate a new candidate configuration every
clock cycle.

Analyzing the execution loop of EA, it can be derived that there are no depen-
dencies among chromosomes in the population. There is a backward dependency
among two success generations resulting from fitness evaluation to individual se-
lection. The hardware implementation can exploit this to highly pipeline the
execution path. Moreover, operations such as mutation and crossover are very
simple and lead to a fast combinatorial logic. The main contribution to the length
of the pipeline is usually caused by the fitness evaluation. The overhead caused
by the multiple pipeline stages is eliminated by careful setting of the population
size so all stages of pipeline are fully utilized.

The FPGA design consists of three units connected in a loop: Selecting the
individual, mutation/crossover and fitness evaluation. Pseudo-random number
generators (PRNG) implemented as uncorrelated LFSR are used for all stochas-
tic operations.

All the units have generically modifiable width of interface so the chromosome
width can differ depending on the problem solved. It is supposed that each unit
is able to accept one chromosome at the input and emit the result at the output
in one clock cycle. All the units are data driven so whenever they have the input
ready they perform their tasks.

Every clock cycle one individual is selected using a tournament selection
and sent to a mutation unit. At the end the fitness unit evaluates a candidate
chromosome and transfers it together with its fitness value to the selection unit.
Following paragraphs describe the units in detail.
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Selection unit Two randomly selected individuals are compared by their fitness
value and the one with higher fitness proceeds to the next generation. Parental
and offspring populations are stored in configurable BRAM memory; however,
in separate banks. While the selection of parents takes place it the first bank,
new individuals are already written in another bank. After the new generation
is complete, the banks are switched and the evolution can continue. To fully
optimize the selection process, the memory is duplicated so in one clock cycle
two individuals can be accessed for the tournament. Figure 4 shows the selection
unit.

Mutation Unit A generic mutation unit was designed to perform mutation
according to user settings. The probability of mutation per bit, pbit, is controlled
by the software via writing value R into the probability register according to
Equation 1.

R =
1

|CH|min(pbit,
N

|CH| )
· PRNGMAX (1)

where |CH| is the length of chromosome, N is the number of samplers and
PRNGMAX is the range of pseudo random generator (PRNG), in our case
232. Each sampler contains two pseudo-random number generators. The result
of the first generator is compared with a value in the register R. If the value
is higher then the mutation takes place. The second generator determines the
position of mutated bit. The mutation is performed using a XOR operation over
a chromosome and a mutation mask. The mutation mask is initialized to zeros
and only bits where the mutation takes place are set to one.

3.3 Results of Synthesis

The evolutionary platform was described in VHDL, simulated using ModelSIM
and synthesized using XILINX ISE. The architecture is parameterized in terms
of the data width and the size of VRC. Results of synthesis are summarized
in Table 1. As the maximum size of the chromosome is 512 bits in current
implementation, the largest VRC that can be encoded consists approximately
of 11 × 4 elements. The system was tested at 100 MHz in FPGA Virtex II Pro
2VP50ff1517. The platform is able to generate and evaluate 100 million candidate
solutions per second.

4 Results

In order to evaluate proposed method, we have chosen to evolve MCMs with
3, 5, 10 and 20 16-bit constant coefficients (given in Table 2). All experiments
were repeated 200 times with the population of eight individuals and five genes
mutated in the chromosome. Table 2 gives other parameters of the experiments,
average results (the number of generations and used adders/subtractors), the
success rate and parameters of the best evolved solutions.



Table 1. Results of synthesis in Virtex II Pro 2VP50ff1517 FPGA for various VRC
sizes, each of them with up to 32 outputs

VRC 6×6 VRC 11×4

Components Used Total [%] Used Total [%]

Function Generators 16085 47232 34.06 18013 47232 38.14
CLB Slices 8043 23616 34.06 9007 23616 38.14
Dffs or Latches 10280 49788 20.65 12529 49788 25.16
Block RAMs 32 232 13.79 32 232 13.79

Results are compared with the best known heuristic approach [10] which
produces very compact solutions. Table 2 shows that the proposed evolutionary-
based approach is able to generate multipliers that are competitive with results
obtained using the state of the art heuristic approach. The evolution can reduce
the total number of components as well as the delay of the designed MCMs.
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Fig. 5. Example of multipliers evolved by proposed hardware accelerator. The objective
is to design multipliers which multiply the input by five coefficients (83, 221, 71, 387,
13). As the VRC utilizes 4× 6 (5× 6) elements, the delay of the evolved multiplier is
equal to 4 (5).

Figure 5 shows two examples of evolved solutions for the 5 constant MCM and
different VRCs. As it can be seen, the number of VRC columns determines the
delay of the evolved multiplier. Figure 6 compares the best evolved solution with
the solution provided by the heuristics for the 3 constant MCM. Evolved solution
contains 2 shifters less and exhibits shorter delay than the solution provided by
the heuristics. Figure 7 shows one of evolved innovative solutions for the 20
constant MCM. This circuit consists of 4 shifters and 19 adders/subtractors.
The heuristic approach [10] provides a solution consisting of 19 shifters and 19
adders/subtractors. Delay remains unchanged.



Table 2. Results of evolutionary design of MCMs with different coefficients. Population
size is 8. Averages are calculated from 200 independent runs.

Settings Average Results The Best MCM

cols × rows maxgen geners. #add/sub succ. rate delay add/sub shifts operations

3 constants: 2925, 23111, 13781

Heuristics [10] 8 8 8 16

5×6 20M 1M62 14 68.5 5 9 8 17
6×6 20M 1M27 14 86.5 6 8 8 16
7×4 40M 2M15 13 99.0 7 8 6 14 (Fig. 6)

5 constants: 83, 221, 71, 387, 13

Heuristics [10] 5 6 6 12

4×6 20M 461k 10 99.5 4 7 6 13
5×6 20M 207k 11 99.5 5 6 6 12
6×6 20M 114k 11 (Fig. 5) 100.0 6 6 5 11

10 constants: 117, 1123, 743, 221, 1069, 7605, 987, 16689, 3033, 29

Heuristics [10] 8 14 13 27

10×4 40M 4M8 23 99.0 7 15 12 27
7×6 20M 4M7 23 95.5 6 17 11 28
9×4 40M 9M5 22 91.0 9 17 9 26

20 constants: 1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71

Heuristics [10] 4 19 8 27

4×10 40M 457k 23 100 4 19 4 23 (Fig. 7)
5×10 40M 347k 23 100 4 19 4 23
6×5 40M 772k 21 100 5 19 3 22

As producing 10M generations (the population size is 8) requires 230 sec.
on a Celeron 2.4 GHz processor, the speedup provided by the accelerator is
approximately 287 times. Although current implementation of the accelerator is
able to design only such multipliers which fit into VRC with the configuration size
up to 512 bits, we proved using a SW implementation that proposed evolutionary
approach is able to produce competitive MCMs approximately up to 100 outputs.

5 Conclusions

A very time-consuming evaluation of candidate configurations is one of problems
which influences the applicability of evolutionary circuit design. In this paper,
we focused on such problems in which a candidate solution can be perfectly
evaluated in a very short time. Linear transforms in general, and multiple con-
stant multiplications in particular, belong to this class. Although well-optimized
heuristics exist for linear transforms design, we confirmed that novel implemen-
tations of multiple constant multipliers can be designed using evolutionary al-
gorithm. In our future work, we will further explore the potential of proposed
accelerator, especially in searching for larger MCMs optimized for area as well
as delay.
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