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ABSTRACT

We propose a new method for automatic generation of se-
crecy amplification protocols for wireless sensor networks,
utilizing evolutionary algorithms. We were able to rediscover
all published protocols for secrecy amplification we are aware
of, and found a new protocol that outperforms the existing
ones. An alternative construction of secrecy amplification
protocols with a comparable fraction of secure links to that
of the original “node-oriented” approach was also designed.
This new construction exhibits only linear (instead of ex-
ponential) increase of necessary messages when the number
of communication neighbours grows. This efficient protocol
can significantly reduce the sensor battery power consump-
tion because of the decreased message transmission rate. We
used a combination of linear genetic programming and a net-
work simulator in this work.

Categories and Subject Descriptors

C.2.4 [Computer-communication networks]: Distributed
networks; K.6.5 [Computing Milieux]: Security and Pro-
tection

General Terms

Security, Performance

Keywords

Evolutionary algorithms, key establishment, secrecy ampli-
fication protocols, wireless sensor networks

1. INTRODUCTION
Advances in miniaturization of electronics creates the op-

portunity to build devices that are small in scale, can run
autonomously using only battery power and can communi-
cate over short distances via wireless radio. These devices
can be used to form a new class of applications, Wireless
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Sensor Networks (WSNs). WSNs are considered for and
deployed in a multitude of different scenarios such as emer-
gency response information, energy management, medical
monitoring, wildlife monitoring or battlefield management.
Resource-constrained nodes pose new challenges for suitable
routing, key distribution, and communication protocols. Se-
curity is often an important factor of WSN deployment, yet
the applicability of some security approaches is often lim-
ited. Terminal sensor nodes can have little or no physical
protection and should therefore be assumed as untrusted.
Also, network topology knowledge is limited or unknown in
advance. Due to the limited battery power, communication
traffic should be kept as low as possible and most operations
should be done locally, not involving the trusted base sta-
tions (BS). We focus on the basic problem of secure link key
establishment, specifically on the strengthening of link secu-
rity after an ordinary key establishment scheme like proba-
bilistic pre-distribution [10] or Key Infection [1] in partially
compromised networks.

This paper proposes a new method for automatic genera-
tion of secrecy amplification protocols [1] for WSNs, which
utilizes linear genetic programming (LGP) [4]. The pro-
posed framework consists of a protocol generator realized
by LGP and a network simulator that computes the fitness
value (quality metric) for candidate protocols. The link keys
established after the execution of a secrecy amplification pro-
tocol might be then used as a building block for a broad
range of application security goals like multi-hop message
secrecy and authentication or secure aggregation.

The paper is organized as follows: the next section pro-
vides a short introduction to wireless sensor networks, high-
lights related security issues and provides overview of re-
lated work. Section 3 describes the proposed framework for
automatic generation of secrecy amplification protocols and
defines the elementary rules used by evolutionary algorithms
to build novel protocols. Our proposed method and an ex-
ample of a protocol evolved for a fixed number of parties
is presented in Section 4. Section 5 describes a different
approach to the protocol construction that significantly de-
creases the number of messages which has to be produced.
Conclusions are given in Section 7.

2. WIRELESS SENSOR NETWORKS AND

THEIR SECURITY
Security protocols for WSNs deal with very large networks

of very simple nodes. Such networks are presumed to be de-
ployed in large batches followed by a self-organizing phase.



The latter is automatically and autonomously executed after
a physical deployment of sensor nodes. Data sensed by nodes
are collected and sent to a base station and then presented to
users. To protect the content of sensed data and prevent in-
sertion of fake information, mechanisms such as encryption
and message authentication are used. These techniques usu-
ally require secret key material to be shared between commu-
nicating parties that must be kept secret from an attacker.
In this work, we focus on usage of symmetric cryptography,
as secrecy amplification protocols are usually based on this,
even when a possibility for combination with asymmetric
cryptography (e.g., for initial key exchange) exists.

A common attacker model (with respect to key manage-
ment) used in the network security arena is an extension of
the classic Needham-Schroeder1 model [17] called the node-
compromise model [10], described by the following addi-
tional assumptions: 1) The key pre-distribution site (if used)
is trusted, i.e. before deployment, nodes can be pre-loaded
with secrets in a secure environment. 2) The attacker is able
to capture a fraction of deployed nodes because no physical
control over deployed nodes is assumed. 3) The attacker is
able to extract all keys from a captured node, i.e. no tam-
per resistance of nodes is assumed. The attacker model is
in some cases (Key Infection [1]) additionally weakened by
the assumption that 4) for a short interval the attacker is
able to monitor only a fraction of links and then it reverts
to being a stronger attacker with ability to eavesdrop all
communication.

The assumption of no tamper resistance lowers the pro-
duction cost and enables the production of a high volume of
nodes. On the other hand, it requires novel approaches to
security protocol design. The aim is to build a reasonably
secure network even in the presence of an attacker who can
obtain secrets for a part of the network by capturing some of
the nodes or eavesdropping part of the key exchanges. Note
that different key distribution techniques have different abil-
ities to withstand such attacks.

2.1 Compromise patterns of key distributions
Secure link communication is the building block for most

security services maintained by a WSN. Here, we focus on
two types of initial key establishment. First is probabilistic
key pre-distribution introduced by Eschenauer and Gligor
[10] (referred to as the EG scheme) and extended later by
[5, 18, 9, 14] and others with improved node capture re-
silience. Second is a plaintext key exchange called Key In-
fection with restricted attacker model introduced in [1]. Key
distribution schemes behave differently when the network is
attacked and partially compromised. We will focus on two
types of network compromise patterns:

2.1.1 Random compromise pattern

This compromise pattern may arise when a probabilis-
tic key pre-distribution scheme [10] and later variants are
used and an attacker extracts keys from several randomly
captured nodes. The EG scheme is based on a simple but
elegant idea. At first, a large key pool of random keys is
generated. For every node, randomly chosen keys from this
pool are assigned to its (limited) key ring, yet these assigned
keys are not removed from the initial pool. Due to the birth-

1An intruder can interpose a computer on all communication
paths, and can thus alter or copy parts of messages, replay
messages, or emit false material.

day paradox, the probability of sharing at least one common
key between two neighbours is surprisingly high even for a
key ring of relatively small size. That makes this EG scheme
suitable for memory-constrained sensor nodes.

When an attacker captures several nodes, links to nodes
other than those captured are potentially compromised as
extracted keys from captured nodes recover a proportion of
the original key pool. The probability that a given link se-
cured by shared keys is compromised is almost independent
of other links. Especially, whether a link to a particular node
is compromised should be almost independent of a compro-
mise of other links to the same node. Note that in the case
of probabilistic pre-distribution, the compromise status of
links from a given node is still slightly correlated because
if one link is compromised, other links from the same node
may be established using the same key(s) as the compro-
mised one. This correlation quickly decreases with the size
of key ring on each node (e.g., it is negligible for 200 keys in
the ring). It holds for links constructed from pre-distributed
symmetric cryptography keys that if link A → B is compro-
mised, then also A ← B is compromised as the same set of
keys is used.

2.1.2 Key Infection pattern

Compromised networks resulting from Key Infection dis-
tribution [1] form the second inspected pattern. Here, link
keys are exchanged in plaintext (no keys are pre-distributed)
and an attacker can compromise them if the transmission
can be recorded by an attacker’s eavesdropping device. The
weakened attacker model assumes that an attacker is not
able to eavesdrop all transmissions, yet has a limited num-
ber of restricted eavesdropping nodes in the field. The closer
the link transmission is to the listening node and the longer
the distance between link peers, the higher the probability
of a compromise. Typically, if the eavesdropping node is
close to the legal node, most of the links to the latter can
be compromised. Note that there can be a difference be-
tween the compromise status of the link A → B and the
link A ← B as the eavesdropping node positioned outside
the virtual sphere of radio transmission range centered on
node A with diameter equal to distance between A and B

will not be able to compromise link A → B but still might be
able to compromise link A ← B. This is another difference
from the Random compromise pattern.

2.2 Secrecy amplification
Substantial improvements in resilience against node cap-

ture or key exchange eavesdropping can be achieved when
a group of neighbouring nodes cooperates in an additional
secrecy amplification protocol after the initial key establish-
ment protocol. This concept was originally introduced in
[1] for the Key Infection plaintext key exchange, but can
be also used for a partially compromised network resulting
from node capture in probabilistic pre-distribution schemes.
Several secrecy amplification protocols were published.

In multi-path key establishment, node A generates q differ-
ent random values and sends each one along a different path
via node(s) Ci to node B, encrypted with existing link keys.
This operation will be denoted as the PUSH protocol. All
values combined together with the already existing key be-
tween A and B are used to create the new key value. An at-
tacker must eavesdrop all paths to compromise the new key
value. A second method, called multi-hop key amplification,



is basically a 1-path version of the multi-path key establish-
ment with more than one intermediate node Ci. Simulations
for attacker/legal nodes ratios of up to 5% in [1] show that
plaintext key exchange followed by secrecy amplification is
sufficient to achieve a network with more than 90% of secure
links within this attacker model.

A variant of initial key exchange (denoted as COMOD-
ITY) without secrecy amplification was presented in [12].
Node A sends the same key K1 to nodes B and C in plain-
text. Then, K1 is used to secure distribution of initial key
material EK1

(B|K2) and EK1
(C|K3) between (A, B) and

(A, C)2. The final key between (A, B) is constructed as
K12 = hash(K3|hash(K2|K1))

A variant of the PUSH protocol, called the PULL proto-
col, was presented in [8]. The initial key exchange is iden-
tical to the PUSH protocol. However, node C decides to
help improving the secrecy of the key between nodes A and
B instead of node A making such decisions as in the PUSH
protocol. This in turn decreases the area affected by the
attacker eavesdropping node and thus increases the num-
ber of non-compromised link keys (valid for Key Infection
distribution).

The impact of a key composition mechanism called mu-
tual whispering on subsequent amplification was also ex-
amined [8]. Mutual whispering is a key exchange where
a pairwise key between A and B is constructed simply as
K12 = K1 ⊕ K2, where K1 is the key whispered 3 from A
to B and K2 from B to A. Experimental results show that
mutual whispering followed by the PUSH protocol gives us
the equivalent fraction of secure links as basic whispering
followed by the PULL protocol for Key Infection compro-
mise pattern. Repeated iterations of the PULL protocols
lead to a strong majority of secure links even in networks
where up to 20% of nodes are the attackers’ eavesdropping
nodes. Note that the assumption that an attacker controls
only a fraction of nodes (e.g., 10%) is reasonable, as an at-
tacker must place his nodes before the network is deployed
and therefore the density of the deployed legal network can
be set to achieve the desired ratio. A detailed analysis of
secrecy amplification protocols with respect to the network
density and number of eavesdropping nodes is presented in
[20].

The impact of PUSH, PULL, mutual whispering and new
automatically derived protocols (as described in Sections 4
and 5) for Random and Key Infect compromise patterns are
compared in Figure 4 and 5. The PULL protocol provides
better results than the PUSH protocol for the Key Infec-
tion pattern, but has no advantage in the Random pattern.
Mutual whispering improves security in the Key Infection
pattern, but no improvement is visible for the Random pat-
tern. A combination of mutual whispering with the PUSH
protocol gives the same results as the PULL protocol alone
in the Key Infection pattern. See [8] for a more detailed com-
parison of the protocols and the impact of repeated runs of
secrecy amplification (not shown here).

2Notation EK1
(B|K2) stands for node identification (B)

concatenated with value of key K2 and resulting message
encrypted (E) with key K1.
3Transmission is performed with the minimal radio strength
necessary to communicate between two nodes, therefore
nodes more distant from the sending node are not able to
hear the transmission.

This short survey should demonstrate that amplification
protocols may significantly increase the fraction of secure
links (e.g., from only 50% secure to more than 90% secure)
and can be combined together. But the impact of such com-
position is dependent on a particular compromise pattern
and is not necessarily beneficial. As each protocol requires a
significant number of messages, their inefficient combination
should be avoided. Moreover, a change in the compromise
pattern may render an existing secrecy amplification proto-
col inefficient. As a result, a time-consuming analysis and
some design effort are needed to find a new protocol.

3. PROPOSED METHOD
In this paper, we propose a method that enables the se-

crecy amplification protocols to be designed automatically
(i.e., with a minimal effort from a human designer) for an
arbitrary compromise pattern.

3.1 Composition of simple secure protocols
Designing new protocols is a time consuming process and

any resulting flaws may remain undetected for a long time.
Various formal verification tools currently exist to verify the
correctness of a proposed protocol (see [15] for an exhaustive
review). Automatic protocol generation (APG) was pro-
posed to automatically generate new protocols with desired
properties using a brute-force space search; protocols’ cor-
rectness is then verified by formal tools [19]. Unfortunately,
there are still limits due to the rapid increase of possible
configurations of non-trivial protocols.

However, the formal verification approach can be avoided
for APG if a new protocol can be securely composed from
simpler (secure) protocols. See [7] for an a good overview
of possible approaches to automatic protocol generation and
protocol composition. Fortunately, this is also the case for
secrecy amplification protocols because they specify the way
in which fresh key values are propagated and combined by
the parties involved. Thus, a secrecy amplification protocol
can be viewed as a composition of a few simpler protocols.
Namely, we need only a protocol for secure message exchange
between two nodes sharing a secret key and a secure com-
position of two or more values.

This is an important difference to former approaches to
APG. As the composition of selected secure protocols will
be also secure (see [7] for such protocols; note that a com-
position is not secure in general), we can skip the formal
verification of the composite all together. Instead, we have
to verify how many keys from freshly generated secrets will
be compromised by an attacker after a secrecy amplification
protocol execution. An attacker is able to eavesdrop the
content of some secrecy amplification messages as he knows
some of the keys used (a partially compromised network is
assumed due to possibility of an attacker capturing nodes
or eavesdropping a fraction of all communications). This is
a deterministic process – if we know exactly which keys are
known to the attacker – and thus can be simulated. Even
if we know only the expected fraction of compromised keys
and the average pattern of compromised links, we can per-
form a probabilistic evaluation. As the number of nodes and
links in WSNs is expected to be high, such average case will
be a reasonable approximation of secure links after secrecy
amplification execution in a real network.

By substituting a formal verification tool with a network
simulator for faster evaluation, we additionally obtain a smoo-



Figure 1: Automatic protocol generation process
with fitness evaluation. The new population is cre-
ated using crossover and mutations. Genotypes are
transcribed into candidate protocols. Using the net-
work simulator and a given partially compromised
network (dotted links), the fitness value (fraction of
secured links) is calculated for each candidate pro-
tocol.

ther indication how good a candidate protocol is. Instead
of a binary indication “secure or flawed”, we will obtain the
number of links additionally secured by a particular proto-
col4. Hence we can use some kind of informed search instead
of an exhaustive search.

3.2 Evolutionary Algorithms
Evolutionary Algorithms (EAs) are stochastic search algo-

rithms inspired by Darwin’s theory of evolution. Instead of
working with one solution at a time (as random search, hill
climbing and other search techniques do), these algorithms
operate with the population of candidate solutions (candi-
date secrecy amplification protocols in our case). Every new
population is formed by genetically inspired operators such
as crossover (a part of protocol’s instruction are taken from
one parent, the rest from another one) and mutation (the
change of instruction type or one of its parameter(s)) and
through a selection pressure, which guides the evolution to-
wards better areas of the search space. The EAs receive
this guidance by evaluating every candidate solution to de-
fine its fitness value. The fitness value (in our analysis, the
fraction of secure links), calculated by the fitness function
(network simulator), indicates how well the solution fulfills
the problem objective (improving network security). In ad-
dition to the classical optimization, EAs have been utilized
to create engineering designs in the recent decade. For ex-
ample, computer programs, electronic circuits, antennas or
optical systems are designed by genetic programming [13].
In contrast to conventional design, the evolutionary method
is based on the generate&test approach that modifies prop-
erties of the target design in order to obtain the required
behavior. The most promising outcome of this approach is
that an artificial evolution can produce innovative designs
that lie outside the scope of conventional methods. In this

4In degenerated case, this can still be only “0% or 100%”
links secure.

work, we will use linear genetic programming (LGP) to gen-
erate the protocols. LGP represents a candidate program as
a sequence of instructions [2].

3.2.1 Primitive instructions set

Each party (sensor node) in the protocol is modeled as
a computing unit with a limited number of memory slots,
where all local information is stored. The memory slot can
be loaded with a) random value, b) encryption key and c)
message. The set of primitive instructions is defined in such
a way that each of the instructions has one or two parame-
ters Nx indicating the node(s) that will execute a given in-
struction (e.g., local generation of a random value will have
only one node parameter; sending a message between nodes
will have two parameters) and up to three parameters Rx

for the identification of used memory slots. These instruc-
tions were selected with the aim of describing all published
secrecy amplification protocols and use only (cryptographic)
operations available on real nodes. A candidate secrecy am-
plification protocol is represented as a program composed of
these instructions and modeled as an array of bytes. The
instruction set is as follows:

• NOP – No operation is performed.

• RNG Na Ri – Generate a random value on node Na

into slot Ri.

• CMB Na Ri Rj Rk – Combine values from slots Ri and
Rj and store the results in slot Rk. The combination
function may vary on the application needs (e.g., a
cryptographic hash function such as SHA-1).

• SND Na Nb Ri Rj – Send a value from node Na to Nb.
The message is taken from Na’s slot Ri and stored in
Nb’s slot Rj .

• ENC Na Ri Rj Rk – Encrypt a value from slot Ri

using the key from slot Rj and store encrypted result
in slot Rk.

• DEC Na Ri Rj Rk – Decrypt a value from slot Ri

using the key from slot Rj and store decrypted result
in slot Rk.

Each instruction has an additional boolean switch, which
can turn the operation off (to equivalent of NOP), with-
out changing the instruction itself. This allows the LGP
to temporarily disable or enable some instructions. Node
identifications Na and Nb can be either fixed (the index)
in case of node-oriented protocols or distance-related in a
group-oriented protocol. These variants are discussed later
in Sections 4 and 5.

Using this set of primitive instructions, a simple plaintext
key exchange can be written as {RNG N1 R1; SND N1 N2

R1 R1;}
5, a PUSH protocol as {RNG N1 R1; SND N1 N3

R1 R1; SND N3 N2 R1 R1;}, a PULL protocol as {RNG N3

R1; SND N3 N1 R1 R1; SND N3 N2 R1 R1;} and a multi-
hop version of PULL as {RNG N3 R1; SND N3 N1 R1 R1;
SND N3 N4 R1 R1; SND N4 N2 R1 R1;}.

Note that the protocol space is extremely large. Even for
small protocols with six instructions and four nodes (each
with six memory slots only) there are more than 1021 possi-
ble configurations6. Proper restrictions might limit the to-
5New key is generated on node N1 into slot R1 and then
send to node N2 and stored in its slot R1.
6(6 × 4 × 6 × 6 × 6)6



tal space size, but such limitation requires some knowledge
about the target environment and the relationship between
protocol and compromise pattern. Our goal is to create a
method which requires only a description of the compro-
mise pattern in a form suitable for the simulator, with the
remainder being done by our proposed automated method.

3.2.2 Genetic operators

The mutation operator is applied at the level of integers
(bytes) that encode a protocol. Every resulting (mutated)
instruction is always valid. The instruction code is selected
from the set of valid instruction codes; the parameters al-
ways remain in the correct range. As the mutation operator
is applied with a given probability to every component of
a primitive instruction (such as instruction code, parame-
ters, boolean execution switch) multiple components of one
instruction might, in principle, be modified during one mu-
tation of the genome (candidate protocol). The crossover
operator is applied at the level of instructions (no crossing
point inside the instruction is allowed). The resulting in-
struction always has a valid form.

Several invalid states might occur as a result of mutation
or crossover operator:

• Reading from uninitialized memory slot occurs
when the instruction uses the value from a particular
memory slot as an input and when no value was stored
in this slot previously. When the usage of uninitialized
slot is detected during protocol execution, the instruc-
tion is skipped and not executed. Some cases of this
invalid reading can be detected during protocol post-
processing at design time. However, some uninitialized
memory slots might result from a message transmis-
sion error or node unreachability. A practical imple-
mentation should initialize all memory slots using a
predefined value in order to detect this invalid state
easily.

• Sending message to permanently unreachable
node – actual layout of nodes deployed in the field
might make it impossible to send a message defined
in the protocol (SND instruction) to a permanently
unreachable target node. Such situations cannot be
usually detected at the design time. It results in miss-
ing an expected value in the memory slot of the tar-
get node, which could potentially cause a reading of
an uninitialized memory slot. If the target node is
permanently unreachable, such instruction will not in-
crease the fitness value during the protocol simula-
tion/evolution. The instruction is discarded from the
resulting protocol during protocol post-processing (prun-
ing), as will be explained later.

• Combination of a new key value from differ-
ent key subparts on involved nodes – the result-
ing new key will be different on nodes involved in the
protocol and thus unusable for subsequent encryption.
Such situation might occur as a result of invalid se-
quence of instructions (detectable at the design time)
or as a result of failed message transmission that fails
to set a proper value to the target node memory slot.
Some instances of such invalid state are automatically
removed during post-processing as such key cannot
contribute to overall protocol fitness value and is thus

discarded. A practical implementation should verify if
key subparts are identical on the communicating nodes
before a new key is combined and used.

3.2.3 Network simulator

Candidate protocols are evaluated using our own simu-
lator that was developed specifically for security analyses
of key distribution protocols and message routing. We de-
signed our own simulator, as the speed of simulation is a
critical factor in the automatic generation process with evo-
lutionary algorithms, where hundreds of thousands of whole
network simulations must usually be conducted to obtain
a secrecy amplification protocol that performs reasonably
well. Commonly used simulators like ns27 work with an un-
necessary level of details for our purposes, for example, with
radio signal propagation or MAC layer collisions. They are
unable to simulate networks with 100+ nodes in a matter of
seconds. However, these common simulators might be used
later to further test the discovered secrecy amplification pro-
tocols found using the method described in this work.

Our simulator is capable of performing:

• Random or patterned deployment of a network with up
to 105 nodes together with neighbour establishment,
secure links establishment and simple routing of mes-
sages.

• Evaluation of the number of secure links of proba-
bilistic key pre-distribution protocols as described in
[6]. Deployment of attacker’s nodes and their eaves-
dropping impact on the network and evaluation of the
number of secure links of published protocols for se-
crecy amplification of Key Infection approach (see [1]
for details).

• A support for the evolutionary algorithms employed
in an automatic generation of protocols. Protocols are
described in the metalanguage of proposed primitive
instructions (see Section 3.2.1) and consequently sim-
ulated to get the fraction of secure links as a fitness
value (see Section 3.2). The implementation of the
LGP is based on the GALib package8.

4. NODE-ORIENTED PROTOCOLS
In this part, we focus on the automatic generation of am-

plification protocols for a fixed number of k parties, i.e. the
same scenario as used in [1, 8]. Such protocol is executed
for all possible k-tuples of neighbours in the network. Note
that the number of such k-tuples can be high9, especially for
dense networks (e.g. more than 10 direct neighbours) and
resulting communication overhead is then significant. How-
ever, this approach provides an upper bound on the success
rate of a given protocol as no k-tuple is omitted.

4.1 Overview of the method
Initially, five protocols were generated; each of them con-

sisting of 200 randomly selected primitive instructions. These
candidate protocols form the initial population for the LGP.

7http://nsnam.isi.edu/nsnam/index.php/Main Page
8GALib – C++ Genetic Algorithms Library.
9E.g., (total nodes ∗ avg neigh) ∗ (avg neigh − 1) ∗
msg per protocol execution for a three-party protocol,
where avg neigh is the average number of neighbours.



Figure 2: Evolved node-oriented 4-party secrecy am-
plification protocol. This is a pruned version of a
200 instruction protocol, no other post-processing
was applied. A circle denotes RNG instruction, an
arrow denotes SND instruction and a box represents
a transmitted value. The values shared between N1

and N2 are of the same color and hatching.

Every protocol is then simulated on our network simulator
and the number of secured links serves as a fitness value.
The 2/3 best-ranking protocols serve as parents for the next
generation, which is created by applying crossover and mu-
tation operators. Protocols from the first generation are not
usually able to secure any additional link, but as evolution
proceeds, there are more and more secured links. The evo-
lution can be stopped when a sufficiently good protocol is
found or the best fitness value has stagnated for some time.

We like to stress that the usage of evolutionary algorithms
is not the only possibility how to generate protocols. We
chose evolutionary algorithms as they have been already suc-
cessfully used in WSN (although for a different purpose like
the optimal node placement [11]), usually exhibiting signifi-
cantly faster convergence towards solution than a brute-force
search.

4.2 Parameters of experiments
The following reference setting of LGP and simulator was

used: target plane was 3x3 units large with 100 deployed
legal nodes. Each node has 0.5 unit maximum transmis-
sion range, which results in 8.2 legal neighbours on average.
For Key Infection scenario, there was 10 attacker’s eaves-
dropping nodes. For Random compromise pattern, 50% of
links were randomly marked as compromised. In this set-
tings, the average success of the PULL protocol is 93.70%
for three amplification iterations and 94.24% of secured links
for ten iterations (assumed as an upper bound). Each party
has 8 memory slots for storing intermediate values and a
candidate protocol was limited by 200 elementary instruc-
tions. Simulations were performed for three distinct network
deployments, the average fraction of secured links is used as
the resulting fitness value. The number of nodes was inten-
tionally kept low to make the simulation as fast as possible.
The functionality of the evolved protocol was later verified
on much larger network with 4000 legal nodes.

4.3 Results for node-oriented protocols
The best performing 4-party protocol discovered by LGP

was produced within 4 days on a 3GHz processor in the
62786th generation. The protocol consists of the instruc-
tions shown in Figure 2. This is a “pruned” version of the
original 200-instructions long protocol found by evolution.
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Figure 3: The typical progress of the fitness value
and the number of effective instructions of the node-
oriented protocol for one evolution run. Solid line
shows fitness value (fraction of secure links) for the
best candidate protocol in the particular generation
and dotted line shows the number of effective pro-
tocol steps (after pruning) of the best candidate.

The importance of each instruction was tested10 by its tem-
poral disabling (pruning) – if the instruction is important,
then the fitness decreases and the instruction is preserved;
otherwise it is discarded from the protocol. Typically, only
5-10% instructions contribute to the fitness value (i.e., there
is analogy to exons and junk DNA in the human genome).
Figure 3 shows a typical graph of fitness values for one par-
ticular run. This protocol can be further post-processed.
Only three memory slots are actually required on each node
instead of eight slots that were available to LGP.

All amplification protocols we were aware of at the be-
ginning of our work were re-discovered here by LGP. The
simple key transfer between neighbours is encoded in steps
{4,8}. The PUSH protocol by [1] is encoded in steps {1,2,3}.
The PULL protocol by [8] is encoded in steps {0,6,9}. The
multi-hop version [6] of PULL amplification is encoded in
steps {0,6,7,9}. Moreover, the new protocol outperforms
existing amplification protocols in fraction of secure links,
as shown in Figures 4 and 5.

The evolved protocol also exhibits an interesting feature
of“polymorphic” instruction. At first inspection, instruction
5 (RNG N4 R4) seems to be redundant as a newly generated
random value by node N4 stored in the slot R4 is immedi-
ately overwritten by the instruction 6 (SND N3 N4 R1 R4).
However, in the case when node N3 is not a direct neighbour
of node N4, i.e. nodes N3 and N4 cannot directly commu-
nicate via a radio link, the message in instruction 6 cannot
be transmitted and R4 is not overwritten. The exact be-
havior of the consequent instruction 7 will vary as R4 can
be filled either with a newly generated random value or the
value received from node N3. Such kind of “polymorphic”
instructions enables the protocol execution even when only
a limited number of nodes is reachable. It would be hard for
a human designer to propose such a protocol as dependency
between the instructions and neighbour layout is rather com-
plex, especially for group-oriented protocols (discussed later
in Section 5).

Note that the automatic design of the node-oriented pro-
tocols with 5+ parties (nodes that take part in single exe-

10After the end of the LGP search as a post-processing, not
impacting the evolution itself.
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No amplification;Mutual whisper
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EA nodes−oriented 1x

EA group−oriented 1x

EA group−oriented 2x

Figure 4: An increase in the number of secured links
after secrecy amplification protocols in the Random
compromise pattern. The PUSH and PULL proto-
cols give the same results; mutual whispering does
not improve security at all. Evolved group-oriented
protocols will be described in Section 5. As can be
seen, strong majority of secure links (> 90%) can be
obtained even when the initial network had one half
of compromised links.

cution of the protocol, independent of the network size) was
not possible in the proposed framework because the number
of simulated messages grows exponentially with the number
of parties involved. The simulator is not able to evaluate
such protocols fast enough to obtain a fitness value. Slow
evaluation prevents the evolution to proceed towards better
solutions in a reasonable time.

An interesting result is that despite the fact that encryp-
tion (ENC) and decryption (DEC) is included in the set of
primitive instructions, none of them was used in the evolved
protocols. There can be multiple reasons for this: At first,
a useful usage of the ENC and DEC instructions may exist,
but the evolution was not able to find it. Secondly, a more
probable reason could have arisen from the setting that we
applied to speed up the evaluation of candidate protocols. If
the link already has some assigned key, this key is transpar-
ently used for encryption, as it is obviously a useful thing to
do (if the key is compromised we will obtain the same result
as sending message un-encrypted, but if the key is secure
then message secrecy will be protected). A series of LGP
runs were performed for the case when the transparent link
encryption was not used. Evolution was significantly slower
in achieving the same fraction of secured links, but the link
encryption using existing keys was essentially developed any-
way via the ENC and DEC instructions.

5. GROUP-ORIENTED PROTOCOLS
As we have already mentioned, node-oriented protocols

introduce a high communication overhead – all k-tuples of
neighbours must be involved in the execution of such proto-
cols. Another issue is an unknown number of direct neigh-
bours and their exact placement. All neighbours can the-
oretically participate in the protocol and help to improve
the fraction of secure links, but it is much harder to de-
sign an efficient protocol for ten nodes without unnecessary
message transmissions instead of three or four nodes. Due
to the broadcast nature of the wireless transmission, nodes’
geographic positions also influence the result of a secrecy
amplification protocol. Finally, due to the random place-
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Key Infection compromise pattern

No amplification

Mutual whisper 1x

PUSH 1x
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EA nodes−oriented 1x
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Figure 5: Key Infection compromise pattern (8 legal
neighbours on average). The PULL protocol pro-
vides better results than the PUSH protocol. The
combination of mutual whispering with the PUSH
protocol gives the same results as the PULL proto-
col alone.
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Figure 6: Total number of messages per single node
required to perform a 3-party, 4-party node-oriented
and group-oriented secrecy amplification protocol.
Even when a group-oriented protocol utilizes signif-
icantly more messages per single execution, the total
number of messages is smaller.

ment of nodes in the sensor networks, the number of direct
neighbours may vary significantly; a protocol constructed for
a fixed number of parties can even fail due to there being an
insufficient number of participants.

5.1 Method
We present a different approach to the design of secrecy

amplification protocols with respect to established scenar-
ios used in [1] and [8] (that are denoted as node-oriented
protocols in this work). Identification of the parties in the
protocol is no longer “absolute” (e.g., node number 1, 2,
3), but it is given by the relative distance from other par-
ties (we will use the distance from two distinct nodes). It
is assumed that each node knows the distance to its direct
neighbours. This distance can be approximated from the
minimal transmission power needed to communicate with
a given neighbour. If the protocol has to express the fact
that two nodes Ni and Nj are exchanging a message over
the intermediate node Nk, only relative distances of such
node Nk from Ni and Nj are indicated in the protocol (e.g.,
N(0.3 0.7) is a node positioned 0.3 of the maximum trans-
mission range from Ni and 0.7 from Nj). In other words,



LGP still operates the same instructions of the protocol as
in the case of node-oriented protocols, but with the distance
values to identify the nodes involved. Based on the actual
distribution of the neighbours in the field, the node closest
to the indicated distance(s) is chosen as the node Nk. There
is no need to re-execute the protocol for all k-tuples as the
protocol can utilize all neighbours in a single execution and
thus significantly reduce the communication overhead. The
relative position of nodes can be expressed as well. The
variation in an actual number of direct neighbours poses no
problem here – the protocol parties will always be found (but
their actual positions may be slightly different from relative
distances indicated in the protocol).

The evaluation process of a group protocol is more com-
plex than for the node-oriented protocols, but the total num-
ber of exchanged messages is significantly lower. Note that
the spared messages come from the change of the secrecy
amplification evaluation rules, not the LGP itself. The role
of LGP is to find a protocol, which will operate in the re-
stricted scenario with much less messages (with respect to
node-oriented protocols, where all k-tuples are executed).
Yet such protocol must still be able to perform comparably
to the node-oriented protocols in terms of the number of
secure links. The evaluation is based on the following rules:

1. Every node in the network is separately and indepen-
dently processed once, in the role of a central node
NC for each amplification iteration. Only direct neigh-
bours of NC (group) are involved in the protocol exe-
cution.

2. A separate protocol execution is performed once for
each direct neighbour (node in the radio transmission
range), this neighbour will have a special role in this
execution and will be denoted as NP (e.g., if there
are 10 direct neighbours around NC , then there will
be only 10 protocol executions with the same central
node NC , each one with a different NP instead of 10

k

for node-oriented). This is a key difference from node-
oriented protocols, and cuts the communication over-
head considerably.

3. The memory slots of the neighbours involved (for the
same NC) are not cleared between the protocol exe-
cutions. This enables the evolution to find a protocol
that propagates values (keys) among a group of neigh-
bours.

4. The node NP provides a list of distances from all its
neighbours (as the minimal transmission power needed
to communicate with a given neighbour) to node NC .
Based on the actual deployment of nodes in the group,
parties of the protocol are replaced by real identifi-
cation of the nodes which are positioned as close as
possible to the relative identification given by NC and
NP in the protocol.

5. When the next node is executed as a central node NC ,
the memory slots of all direct neighbours are cleared
(memory values cannot propagate between executions
with a different central node NC) as such process re-
quires non-trivial synchronization in real network.

Figure 6 compares the number of necessary messages for
the three/four-party node-oriented protocol and the group-

Figure 7: Example of an evolved group oriented se-
crecy amplification protocol. Selected node-relative
identification (distance from NC and NP ) of involved
parties are displayed as the geographically most
probable areas, where such nodes will be positioned
(right part of the Figure). The number in brackets
before each instruction gives the fitness loss when
the instruction is removed from the protocol. The
formula at the bottom is used to calculate devia-
tion of the node in the field from the distance values
stated in the protocol, where NP1 is distance from
the node NC and NP2 is the distance from NP , re-
spectively. Two probabilistic layouts for nodes po-
sitions are shown – upper layout is when distance
between NC and NP is 0.6 of maximum transmission
range. The lower layout is for maximum transmis-
sion range.

oriented protocol constructed using the above described pro-
cess.

For the purpose of evolutionary speedup, we introduced
the automatic actions that do not have to be evolved as they
are obviously beneficial:

• Each message transmission (SND instruction) is trans-
parently encrypted with an existing link key (which
can be either secure or compromised by eavesdropping)
even when not stated explicitly in the protocol.

• The shared values later used for the creation of new
link keys are automatically found in memory slots of
NC and its neighbours Nx at the end of each execu-
tion for a fixed node NC . Again, this speeds up the
search. In the actual execution of the protocol, this
can be achieved efficiently using Bloom filters [3] with-
out a transmission of the values or better by the post-
processing of an evolved protocol (re-order of memory
slots and additional CMB instructions).

As for node-oriented protocols, more iterations (amplifi-
cation repeats) can be executed. For the purpose of evalu-
ation, the results within one iteration are independent and
may influence only the next iteration, not the current one
(links secured during an actual iteration will not help to se-
cure other links during the same iteration – the ordering of
the actions of nodes in the simulator thus does not impact
the results). At the end of each iteration, the link security
status is evaluated and updated.



5.2 Results for group-oriented protocols
Efficient group-oriented protocols with a similar fraction

of secure links comparable to node-oriented protocols were
usually evolved in 105 generations (see Figures 4 and 5 for
the performance of evolved group-oriented protocols). An
example of such an evolved protocol is presented in Figure
7. Such a protocol has typically 10-15 important instruc-
tions and uses neighbours from 5-7 geographically different
areas. The SND instruction is the most common one, form-
ing 60-80% of instructions of discovered protocols. There
is not only one “best” protocol – instead, most LGP runs
provide some useful amplification protocols which differ in
their instruction order.

In contrast to node-oriented protocols, instructions of the
evolved protocols are more difficult to understand as the
parties are not directly specified any more. Various tech-
niques such as real-time visualization of message transmis-
sion, analysis of memory store/load sequences or visualiza-
tion of probable areas of relatively identified parties (see
Figure 8) can be used to recognize the actual purpose and
importance of the instructions (see Section 5.4 for more de-
tails).

Again, interesting and rather unexpected “tricks”were in-
troduced through evolution. Firstly, two SND instructions
in an example protocol shown in Figure 7 may appear use-
less (no value is available in the memory slot 6 for the first
run of the protocol), but as the protocol is executed repeat-
edly for all nodes within a group, this value can actually
be present in memory slot 6 from a previous execution as a
result of the instruction 7 or 10 in example protocol. Evo-
lution was able to include such “overlapping executions” in
the protocol even when not explicitly designed to, while this
might be difficult for a human designer.

Surprisingly, the most important intermediate node (node
that is responsible for the majority of newly secured links
between nodes NC a NP ) is not positioned in the center
between these two nodes (i.e. in area A in Figure 8 b))
which would reflect the assumption that shorter links have
a smaller probability to be compromised in Key Infection
pattern. Instead, the most probable position for that inter-
mediate node is area C shown in Figure 8 b). Note that
position of area C (and so intermediate node) depends on
the distance between nodes NC and NP . When these two
nodes are close to each other then C is“behind”node NC . As
the nodes move away from each other, area C moves around
NC to the position shown in Figure 8 b). When both nodes
are very close to the maximum transmission range then C

is located in one third of the distance between NC and NP ,
closer to the NC (Figure 8 c)).

Note that removal of a single instruction I from the pruned
version (all instructions are necessary) of the protocol can
not only decrease the overall fitness value, but it can also
increase the contribution to fitness value of other instruc-
tion(s) J . There are two reasons for this behavior: 1) In-
struction I was really harming the fitness gain from instruc-
tion J , but the caused harm is lower than the fitness gain
and thus I remains in the pruned protocol. 2) Instruction J

is able to compensate (at least partially) the loss caused by
I’s removal and it is able to secure some links originally se-
cured by the instruction I. Analysis of separate instructions
shows that the second case is much more common. Thus, an
evolved protocol exhibits a “defense in depth” property, i.e.
when some instructions cannot be executed (due to missing,
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Figure 9: The typical progress of the fitness value
and the number of effective instructions of the
group-oriented protocol for one evolution run. Solid
line shows fitness value (fraction of secure links) for
the best candidate protocol in the particular gener-
ation and dotted line shows the number of effective
protocol steps (after pruning) of the best candidate.

unreachable or compromised party), other instructions are
able to (partially) compensate for the decrease in the num-
ber of secured links. Similar behavior was also observed for
the evolved node-oriented protocol. In this task, evolution-
ary design provides not only the required functionality, but
also robust solutions.

5.3 Parameters used for LGP
This section summarizes the parameters and settings used

for linear genetic programming to generate candidate proto-
cols.

Based on random sampling test, the fitness landscape11

for node-oriented protocols seems to be highly rugged with
only a few significant fitness values in the search space. A
small population with a rapid mutation is suitable for solving
such problems (similarly to evolution of digital circuits using
Cartesian Genetic Programming (CGP) [16]). The popula-
tion size was fixed to 5 individuals. The mutation opera-
tor is applied with 10% probability. Similarly to the CGP,
crossover is not used (series of experiments did not shown
improvements in evolution convergence when crossover was
used).

The fitness landscape for group-oriented protocols seems
to be smoother than for node-oriented protocols. We utilized
20 individuals in the population and a single point crossover
operator12 applied with the probability 70%. Mutation with
a 5% rate was used. Fitness evaluation was significantly
faster (as significantly less messages had to be simulated)
than for the node-oriented candidate protocols. Therefore,
significantly more generations could be used. Steady state
replacement rule (GASteadyStateGA in GALib) for the worst
1/3 of the actual population is used to maintain population
size for both types of the protocols.

11The fitness values for each possible instance in the search
space. Note that we cannot compute the whole landscape
in a reasonable time – if we could, then there would not be
any need for any EA – we could obtain the solution, i.e. the
fitness maximum, directly.

12Crossover points allowed at the level of instructions only.



Figure 8: Layout of areas for potential parties when the distance between the central node NC and node NP

is a) 0.1 of the maximum transmission range, b) 0.6 range and c) the maximum transmission range.

5.4 Methods for analysis of evolved protocols
Various techniques can be used to recognize actual pur-

pose and importance of the instructions:

• Real-time visualization of message transmission
– Elementary protocol functionality can be obtained
by observing the visual representation of the protocol
execution with a set of nodes with fixed positions. One
limitation of this approach is that only execution for
a given distribution of nodes is obtained and the be-
haviour of instructions for different node distributions
can be overlooked.

• Instructions cross-dependency using pruning-
like process – The fitness reduction effect can be
studied to identify groups of instructions with cross-
dependent fitness values. As the protocol has already
been pruned, removing any single instruction I means
a fitness decrease. An additional pruning process over
the reduced protocol (without I) gives us the differ-
ence in the fitness gain for each of remaining instruc-
tion (some instructions may be completely removed if
they have no function without I). The higher the de-
crease in the fitness gain by a particular instruction J ,
the stronger the dependency of J on the removed I.

• Analysis of memory store/load sequences – As
described in section 3.2.1, each party has a limited
number of memory slots that are used to store inter-
mediate values. A chain of memory slots connected
by the edges representing a particular instruction can
be established for graph-like visualization of this pro-
cess (see Figure 10 for example). More precisely, if
there is instruction I that reads from memory slot Mi

and writes to memory slot Mj , we can connect ver-
tices Mi and Mj in the graph by an edge labeled by
I. The resulting graph can then be analyzed to obtain
an indication of paths the values propagate during the
protocol execution.

• Probable areas for parties identified by the rela-
tive distance – Visualization of the areas where nodes
referenced in the protocol will, with a high probabil-
ity, be positioned, is an important source of informa-
tion how a given protocol works. Note that these areas
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Figure 10: Memory chain for example group-
oriented protocol from Figure 7. Circles constitute
memory registers with labeled edges standing for
instruction responsible with register manipulation.
The memory registers used for the final link key
construction are double-circled.

are not static for all nodes NP , but differ significantly
with the distance between the central node NC and its
special partner for protocol NP . A change of the posi-
tion and the shape of areas with distance between NC

and NP also reveals the information how the fresh key
values are propagated in the group. Using this tech-
nique, we can derive (see Figure 8 b)) that instruction
3 sends a value stored by the instruction 9 in the pre-
vious run of the protocol when the position of NP is
around 0.6 of the maximum transmission range of NC

and in the layout area B. The reason is that in this
distance the layout area B overlaps with the position
of node NP and these two parties of the protocol are
most probably mapped to the same physical node.

6. FUTURE WORK
This work presents results for secrecy amplification pro-

tocols applied in environments with randomly compromised
links or a localized compromising attacker. Future work will
cover the possibility of protocol generation for selective link
compromise patterns and performance of protocols evolved
for the randomly compromised links when applied to an en-
vironment with selective link compromise patterns.

Additionally, investigation of the attacker’s compromise
strategy is an interesting and complex problem, especially
when various properties of deployment scenarios, including
nodes relative positions, are to be considered. The protocols
automatically designed in our work exhibited increased tol-



erance for unreachable nodes. Also, the group-oriented de-
sign requires significantly smaller numbers of messages, but
might be more vulnerable to a selective compromise strategy
as a relatively small number of possible paths are used for
fresh secret propagation. Automated design of an attacker
strategy against existing secrecy amplification protocols is
another open research question.

The “tricks” found/discovered in EA generated protocols
with good properties may be subsequently used for non-
automatic design of new protocols. As EA is limited only
by the defined constraints (here an implementation in sim-
ulator), building blocks in EA generated algorithm can be
novel and surprising. But note that really useful tricks are
occurring rarely and obfuscated versions of already known
design principles/building blocks are much more often. A
thorough analysis of evolved protocols is therefore neces-
sary before any evolved building block or perceived “trick”
is used in non-automatic protocol design. Particular cau-
tion must be taken when defining a set of rules for estimat-
ing protocol quality by a simulator. Incomplete definition
of the fitness function or simulated constraints might result
in a well-performing, but practically invalid protocol. While
developing our simulator, we experienced several protocols
securing suspiciously high fraction of links. After deeper
inspection of such protocol, we discovered either our pro-
gramming error or an incomplete specification of the fitness
function that was exploited by the EA in well-performing,
but practically invalid protocol.

On the other side, a too restrictive set of simulator rules
is not appropriate as well as it is (possibly unnecessarily)
limiting the search space for the EA. If the novel “tricks” are
of the main interest, one may start with a rather benevolent
set of rules giving the EA a large search space. New rules
can be then be iteratively added according to inspections
of the evolved protocols, in order to restrict violations of
yet undefined practical constraints. We will focus on such
methods in our further work.

7. CONCLUSIONS
We examined the area of automatic design of secrecy am-

plification protocols and their relation to the underlying key
distribution protocol in wireless sensor networks. Some se-
crecy amplification protocols may work well in networks with
randomly compromised links (e.g., resulting from node cap-
ture for probabilistic pre-distribution), but may give a sub-
optimal performance when applied to more correlated com-
promise patterns arising from distribution approaches such
as Key Infection. Moreover, some steps in the secrecy am-
plification protocol may be pointless for a given compromise
pattern as they do not improve the secrecy of any link – and
thus impose only an unnecessary message overhead.

We have described a more flexible approach based on the
fact that the effectiveness of secrecy amplification protocols
can be automatically evaluated using a network simulator.
Linear genetic programming was used to search for new pro-
tocols. We were able to rediscover all published protocols
for secrecy amplification we are aware of, and to find a new
protocol that outperforms existing protocols. The new pro-
tocol operates with four parties, but is able to operate even
when only three parties are available. A single iteration of
the secrecy amplification protocol can increase secure links
from 60% to more than 95% for the Random and 88% for
the Key Infection compromise pattern.

A significant disadvantage of existing secrecy amplifica-
tion protocols is their high communication overhead because
the number of required messages grows exponentially with
the number of direct neighbours. By moving from node-
oriented protocols to group-oriented protocols and using an
evolutionary design approach, we were able to find proto-
cols where the fraction of secured links is comparable to
node-oriented protocols, but with only a linear (instead of
exponential) increase in the required messages with respect
to the increasing number of neighbours. This is especially
important for dense networks with more than 10 neighbours.
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