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Brno University of Technology, Faculty of Information Technology
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Abstract. Recently, a method has been presented that allows a signif-
icant test application time reduction if some of gates of a digital circuit
are reconfigured before test is applied. Selection of the gates for recon-
figuration was performed using a very time consuming deterministic re-
cursive search algorithm. In this paper, a new method is proposed for
selection of the gates in order to reduce the test application time. The
method utilizes an evolutionary algorithm which is able to discover very
competitive reconfiguration strategies while the time of optimization is
considerably reduced with respect to the original algorithm. Moreover,
the user can easily balance the trade off between the number of test
vectors and amount of logic that has to be reconfigured. Experimental
results are reported for the ISCAS85 benchmark suite.

1 Introduction

One of the most significant properties of biological organisms is the ability to
modify the conformation. Optimally-chosen conformation helps the biological or-
ganisms to perfectly manage elementary functions such as reproduction, sensing,
communication, competition with others etc. Conformity between an organism
and its environment constitutes what biologists call adaptation [1]. Reconfig-
urable architectures in fact implement the same concept in the world of elec-
tronic circuits. Different configurations of the same hardware can be activated
to optimally perform quite different tasks, thus providing an obvious advantage
to single-purpose circuits.

A circuit support for diagnostics and testing is one of the functionalities that
are embedded in modern electronic chips. However, this functionality can be
considered as time/area overhead because it is not directly utilized by end users.
In a typical scenario, a singe purpose “user circuit” is equipped with a diagnosis
subsystem that performs diagnostics and testing after fabrication (to identify
faulty chips) and during lifetime of the system (such as BIST, on-line testing
etc.). Unfortunately, costs of electronic chip testing have been growing steadily
and typically amount to 40% of today’s overall product cost [2]. In particular,
the test application time which strongly depends on the number of test vectors
needed to test a digital circuit significantly influences the product cost. Hence
automatic test pattern generator tools have been used to reduce the number of



test vectors for a long time. High-quality test sequences in combination with
full/partial scan techniques and other methods allowed designers to reduce the
test application time significantly [3, 4, 5, 6, 7].

The reduction of test data volume is traditionally achieved by means of test
data compaction [8, 9]. An unconventional approach to the test time reduction
was introduced in [10]. The idea is to apply a smart circuit reconfiguration (i.e.
to change the organism’s conformance in biological terminology) before test is
applied in order to reduce the number of test vectors. More precisely: It is known
that automatic test pattern generator (ATPG) tool can generate k-vector test
sequence T leading to p% fault coverage where k and p depends on structure
and properties of a given circuit C, fault model used and user requirements.
However, it was shown in [10, 11] that if logic function of some gates of C can be
changed then a much shorter test T ′ can be generated, i.e. k can be significantly
decreased (tens of percent, depending on circuit) simultaneously with having p
almost unchanged. Therefore, the second circuit configuration is used only during
test application to reduce the test application time. It is important to note that
circuit topology remains unchanged during this reconfiguration. A method was
proposed in [11] to find suitable gates for reconfiguration. However, the method is
based on a deterministic recursive search which is very time consuming (days for
mid-size circuits) and so impractical for designers and test engineers. The method
was validated using only four benchmark circuits of the ISCAS85 benchmark
suite [12].

The goal of this paper is to propose a new method for reduction of test vectors
volume. The method should lead to a comparable quality of results wrt the previ-
ous approach; however, the time of computation has to be reduced. As there are
many successful applications of evolutionary computing to hardware optimiza-
tion and design [13, 14] the proposed method will be based on the evolutionary
computing paradigm. Our goal is to generate a new circuit configuration, which
differs from the original one as little as possible, but possesses better properties
in terms of volume of required test vectors. The proposed algorithm utilizes a
simple weight function to allow balancing the trade off between the number of
test vectors and amount of logic that has to be reconfigured.

The rest of the paper is organized as follows. Previous work in the area of test
time reduction using circuit reconfiguration is summarized in Section 2. Proposed
method intended for selection of gates that will be reconfigured before test is
applied is presented in Section 3. Section 4 gives an overview of experiments
performed to evaluate the proposed method. It also compares the results with
paper [11]. Section 5 is devoted to the analysis of obtained results. Conclusions
are given in Section 6.

2 Previous Work

Conventional approaches to reduction of test application time are well covered
in literature. This section surveys the method which is relevant for our research.



2.1 Reconfiguration Before Test Application

The principle of the method (which was initially proposed in [10]) is to identify
gates of a circuit whose function has to be reconfigured before test is applied
in order to reduce the number of test vectors. The reconfiguration should have
the following properties: (i) The number of test vectors is reduced as much as
possible. (ii) The number of reconfigured gates has to be minimized. (iii) The
fault coverage is not influenced significantly (for a given fault model). (iv) Circuit
connections remain unchanged. (v) Reconfiguration does not change the number
of inputs and outputs of gates (for example, a two-input/one-output gate can
be replaced only by a two-input/one-output gate).

After test is applied, the circuit is reconfigured back to its original config-
uration. Only the gates that have to be reconfigured will be implemented as
reconfigurable; other gates remain implemented using a standard library.

2.2 Search Algorithm

Since the number of possible reconfigurations is nr, where n is the number of
gates of the circuit and r is the average number of possible replacements of a
gate, an exhaustive search for an optimal configuration is intractable for real
world circuits. Because the original method was based on enumeration, only the
results for very small circuits (up to 13 gates) have been reported in [10]. In order
to solve larger problem instances, a recursive search algorithm was proposed
in [11]. This algorithm systematically reconfigures gate by gate, measures the
resulting test length and fault coverage. When a particular gate reconfiguration
leads to an improvement, the configuration is fixed and the algorithm is executed
recursively from the next gate. Promising results have been reported for some of
the ISCAS85 circuits even if the algorithm is terminated before the end of the
complete search space exploration. In both cases the FlexTest tool was used to
generate test vectors and calculate the fault coverage.

As discussed in [10, 11], the basic assumption of the proposed method is
that gates are considered as black boxes and only the circuit structure is tested
because it is expected that failures in components will propagate outside the
component. A possible problem is that demanded reconfigurable two-function
gates may be functional in one mode and damaged in the other. This could
lead to undetectable faults or false alarms. However, that strongly depends on
the implementation of reconfigurable gates. Recall that a 100% fault coverage
is not nowadays achievable for complex real-world circuits. Hence some faults
will always remain unrecognized. Although the method can leave some faults
unrecognizable too, it allows reducing of the test vectors volume for a reasonable
cost.

2.3 Example

Figure 1 shows a 3-input/8-output decoder (dec3to8) which consists of eleven
gates (seven 3-input NOR gates, three inverters and a 3-input AND gate). Flex-
Test was utilized to derive the test with 100% fault coverage. A stuck-at-fault



model was considered for AMI 1.2 um technology. The resulting test contains
eight vectors: 100, 000, 111, 110, 011, 101, 010 and 001, i.e. it is the trivial test.

Logic function of four gates of this circuit was modified as shown in Figure 1.
Modified gates are shown in boxes. The three inverters were reconfigured to
operate as simple wires (buffers) and the AND gate now operates as the NOR
gate. Note that in the X/Y notation, X denotes the original function and Y
denotes the modified function. Again, FlexTest was used to find a test with
100% fault coverage. The new test contains only four test vectors (100, 000, 010
and 001) which represents a 50% reduction. Other experiments are summarized
in papers [10, 11].

Fig. 1. Circuit dec3to8. Reconfigured gates are shown as boxes.

2.4 Possible Implementation Scenarios

An open problem (not addressed in this paper) is how to implement the reconfig-
urable gates. A straightforward approach is to employ multiplexing of the “user”
and “test” function for selected gates (Fig. 2). This solution has a reasonable
overhead, especially when the reconfigurable gate is optimized at the transistor
level as shown in [15]. However, the select inputs of multiplexers are not con-
sidered during test pattern generation by ATPG. Hence it is necessary to use
additional test vectors to test the select-inputs which increases the overall test
time application. This solution is acceptable only in some cases.

Another solution could utilize so-called polymorphic gates. Polymorphic gates
are unconventional circuit components that are not supported by existing syn-
thesis tools. A polymorphic gate is capable of switching among two or more logic
functions. However, the selection of the function is performed unconventionally.
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Fig. 2. Reconfigurable NAND/NOR gate based on a multiplexer and its optimized
transistor-level implementation according to [15]

The logic function of a polymorphic gate depends on some external factors, e.g.
on the level of the power supply voltage (Vdd) [16, 17, 18, 19]. Figure 3 shows the
NAND/NOR gate controlled by Vdd which was fabricated using AMIS CMOS
0.7 micron technology. In case of reduction of test vectors volume it is assumed
that the circuit will operate with a slightly different Vdd in test mode. Selected
gates will then perform differently wrt the user mode and the test application
time will be shorter (under our assumptions). As there are no select signals for
polymorphic gates the problem with their testing does not exist. On the other
hand it must be investigated whether all faults of the normal mode of the gate
remain detectable in the test mode. There are other issues such as that a poly-
morphic circuit may have different timing parameters or power consumption
during normal operation and test application.

3 Proposed Method

The proposed method utilizes a steady-state evolutionary algorithm (EA) which
operates over chromosomes composed of n integers. New individuals are created
using mutation applied on best-scored individuals of the population. Crossover
is not utilized. The fitness function integrates the criteria given in Section 2.1
using weight coefficients.



Fig. 3. Polymorphic NAND/NOR gate controlled by Vdd and its measured behavior
according to [19]

3.1 Notation

Let G be a set of all gate types which can appear in the target design and C
be a gate classification function such that g1, g2 ∈ G belong to the same class
if and only if they have the same number of inputs and outputs and g1 can be
replaced by g2 (and vice versa) in the target circuit. We lift C to the sequence
of gates such that

C(g1 . . . gn) = C(g1) . . . C(gn).

Additionally, len(s) denotes the number of symbols in a sequence s and δ(u, v)
denotes the number of positions, where strings u and v differ.

3.2 Circuit Configuration

A digital circuit consists of the finite number of gates and an interconnection
network. In this work, we only consider the sequence of gate types g1 . . . gn (in
the order given by a circuit’s netlist) as a circuit configuration, because the
interconnection network is always fixed. Each chromosome is then composed of
just one circuit configuration.

3.3 Fitness Function

Our goal is to generate a new circuit, which differs from the original one as little
as possible, but the test lenght is reduced. Fault coverage should not be modified
significantly. Thus, we want to minimize the function

f(nc, oc) = A ∗ (1− tCov(nc)) +B ∗ vc(nc)
vc(oc)

+ C ∗ δ(nc, oc)
len(oc)

,

where nc, oc denote the new and original configuration respectively, tCov(x) ∈
〈0, 1〉 is a value which expresses the fault coverage of a given configuration, and
vc(x) denotes the volume of required test vectors. Coefficients A, B, C represent
the weight of each property.



Algorithm 1: Evolutionary Algorithm
Input: input configuration c, population size s, and mutation probability pmut

Output: output configuration x

/* seeding phase */

P ← ∅;1

while |P | < s do2

P ← P ∪ {modify(c, pmut)};3

while 〈terminating condition not satisfied〉 do4

/* reproduction phase */

P ′ ← ∅;5

while |P ′| < s do6

select x ∈ P randomly;7

P ′ ← P ′ ∪ {modify(x, pmut)};8

/* reduction phase */

P ← P ∪ P ′;9

while |P | > s do10

select x ∈ P such that f(x, c) ≥ f(y, c) for any y ∈ P ;11

P ← P \ {x};12

return x ∈ p such that f(x, c) ≤ f(y, c) for any y ∈ P ;13

3.4 Mutation

Mutation takes an input configuration and flips each gate with the probability
pmut. A new gate is selected randomly from the set of all gates belonging to the
same class (according to C).

3.5 Evolutionary Algorithm

The evolutionary algorithm (Algorithm 1) starts with seeding of population P by
randomly modified input configuration c. The modifications as well as mutations
are performed by function modify. Then, it repeats reduction and reproduction
phases. In the former the worst individuals wrt f are being iteratively removed
until the size of the population meets the required criterion. The reproduction
phase then generates new individuals by modifying configurations which are
picked randomly from the original population. The condition which terminates
the main loop of EA can be either the program running time or the number of
generations being generated. As a result, the algorithm picks the best individual
from the last population.

4 Experimental Results

As for experiments reported in [11], G contains 56 standard gates (with up to 4
inputs) which are also supported by the AMIS library. In addition, 7 gates (with



up to 8 inputs) were included to G to cover all the gates used in the ISCAS85
circuits. The FlexTest tool is used to generate test vectors and calculate the
fault coverage. The results of proposed evolutionary algorithm are compared
with the recursive search algorithm using the ISCAS85 benchmark suite. Main
features of the ISCAS85 circuits (such as the number of gates, test length and
fault coverage) are given in Table 2 (column ‘Original circuit’). All experiments
were permormed on a server with 2 x Dual Core AMD Opteron 2220.

Performing a single experiment is very time consuming because of using the
FlexTest tool in the loop. Hence we have firstly investigated different settings of
our EA on circuits c499 and c1355 and then performed a final set of experiments
with all the benchmark circuits. For the first experiments we have used A = 1000,
B = 100, C = 10, the probability of mutation pmut = 0.005 and the population of
1000 individuals. Various modifications of EA were tested using the c499 circuit.
Resulting values are given in Table 1. Figure 4 shows the relation between the
number of test vectors and the number of reconfigured gates for the c499 circuit.
It can be seen that EA produces various solutions and one can easily identify a
Pareto front in the figure.

Table 1. Summary of experiments for c499 with basic setup: A = 1000, B = 100,
C = 10, popsize = 1000, pmut = 0.005, 10 independent runs, 1000 generations

Modification wrt gates test vectors fault coverage [%] Mean
basic setup min. max. mean min. max. mean min. max. mean t [h]

500 gen. 10 32 23.8 29 34 31.2 99 100 99.6 3.29
250 gen. 11 30 31.4 30 34 31.4 100 100 100 1.80
100 gen. 19 27 24 30 33 31.4 99.73 100 99.97 0.72
250 gen./pmut = 0.01 24 45 33.9 28 32 29.6 99.33 100 99.91 1.75
250 gen./pmut = 0.0025 14 21 17.5 30 34 32.3 99.47 100 99.82 1.72
250 gen./A = 700 14 40 24.3 29 34 30.8 98.94 100 99.77 1.87

Figure 5 shows the results for the c1355 circuit obtained from 10 independent
runs. Note that applying the FlexTest on this circuit (which consists of 546
gates) leads to the 108-vector test sequence and 99.49% fault coverage. The
fault coverage was slightly reduced after using the proposed method; however,
the test length was significantly reduced to 27 – 37 test vectors when 39 – 70
gates are reconfigured. The average runtime is 4.2 hours for 500 generations.

Table 2 summarizes the results obtained for the complete set of ISCAS85
circuits using the proposed evolutionary algorithm and the recursive search. EA
has been applied with the following setting: A = 1000, B = 100, C = 10, popsize
= 1000, pmut = 0.005, 1000 generations, a single run per circuit. The time of
evolution depends on the complexity of a particular circuit. An example of EA
run is given in Fig. 6 which shows the progress of fitness score and the number of
test vectors for the best individual in case of the c7552 circuit. As the recursive
algorithm presented in [11] is deterministic we allowed the algorithm to run (i)



Fig. 4. Test length vs the number of modified gates for the c499 circuit (60 runs with
different setting)

Fig. 5. Results of 10 independent runs for the c1355 circuit.



for the same time as EA and (ii) for the maximum limit of 96 hours. In most
cases of (ii), the computation was not terminated within this time limit.

Fig. 6. The progress of fitness score and the number of test vectors for the best indi-
vidual (the c7552 circuit).

5 Discussion

We can see from Table 2 that the proposed method has reduced the number of
test vectors by 49.0% and reconfigured 6.4% of gates in average (all benchmarks
counted). Note that only a single run was performed (9.5 hour per circuit in
average). The recursive algorithm has achieved a reduction of 31.4% test vectors
and reconfigured only 2.6% of gates (when 96 hours were allowed). The recursive
algorithm has increased the fault coverage measure by 0.4% in average and the
EA has decreased the same measure by 1.9%. wrt the original fault coverage.
Some particular results are interesting: No result was discovered by the recursive
algorithm for the c1355 circuit; however, the EA has found a significant reduction
of test vectors volume. Both algorithms have achieved similar results for the c499
circuit. The recursive algorithm has produced much better results for the c6288
circuit (where only 10 gates have to be reconfigured (94 in case of EA) to get
the same test length). A significant test volume reduction has been achieved for
c7552 circuit using EA; however, the solution is not probably acceptable as fault
coverage is decreased by 6.77%. We expect that better results will be obtained
in case that EA is executed multiple times.

In summary, the proposed evolutionary algorithm has two main advantages
in comparison with the deterministic recursive search algorithm. Firstly, it pro-
duces many different solutions which allow the designer to balance the trade off



Table 2. Parameters of the original ISCAS85 circuits and the circuits modified using
the evolutionary algorithm and the recursive search (the time allowed as for EA vs 96
hours allowed). Notation: rg – the number of reconfigured gates, tl – test length, fc –
fault coverage [%], t - runtime

Original Circuit Evol. Algorithm Recursive (t[h]) Recursive (96h)
gates tl fc rg tl fc t[h] rg tl fc rg tl fc t[h]

c17 6 9 100 4 5 100 3.5 3 5 100 3 5 100 0.1
c432 160 102 99.24 22 50 99.07 4.9 22 63 99.82 27 57 99.82 96.0
c499 202 67 98.94 31 30 100 4.9 34 33 100 36 28 100 96.0
c880a 383 104 100 63 49 99.50 5.0 24 74 100 30 66 100 96.0
c1355 546 108 99.49 67 31 98.52 7.7 0 108 99.49 0 108 99.49 1.9
c1908 880 163 99.52 90 48 95.54 7.0 26 119 99.74 30 114 99.79 96.0
c2670 1269 189 95.74 99 92 95.33 8.7 29 155 96.50 59 109 96.73 75.5
c3540 1669 252 96.00 103 171 94.32 9.8 22 214 96.48 57 196 97.20 96.0
c5315 2307 190 98.88 123 111 92.32 9.0 7 182 98.92 58 127 98.99 96.0
c6288 2416 46 99.56 94 35 98.31 9.5 7 39 99.56 10 36 99.56 31.5
c7552 3513 371 98.26 152 207 91.49 34.7 14 351 98.40 36 325 98.41 96.0

between the number of test vectors and amount of logic that has to be reconfig-
ured. Secondly, the EA generates a reasonable solution for larger circuits much
faster than the recursive algorithm. On the other hand, as EA does not strictly
keep the fault coverage equal to or higher than the original value, the resulting
solution can exhibit slightly lower fault coverage. However, this behavior can be
eliminated by setting stronger requirements in the fitness function.

6 Conclusions

In this paper, we have presented an alternative method for selection of gates that
have to be reconfigured before test is applied in order to reduce the test applica-
tion time. We have shown on the ISCAS85 benchmark suite that the proposed
method is able to achieve competitive results while the time of optimization is
reduced wrt the deterministic search. In future, we plan to use a truly multi
objective algorithm to easily discover the Pareto-optimal solutions.
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