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Abstract: This paper presents a procedure for on-line visual-content-based video synchroniza-
tion. The motivation of the presented work is the rare evidence of on-line video processing
systems employed in video classification or summarization applications although many off-line
solutions for video analysis exists. In some applications, the video streams go through broadcast
systems that delay the original video and also distort the original signal. The system that would
be able to automatically detect such delays, transmission errors, distortions, or broadcast failure
is highly required. The presented solution employs visual vocabularies that allow signing the
video frames by bag-of-words. The synchronization procedure is based on searching for similar
frames from different video streams. This paper also overviews the state-of-the-art techniques
required for visual vocabulary building and discusses the convenient properties of techniques for
real-time on-line systems.
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1. INTRODUCTION

The main task of video synchronization systems is to
detect and validate the time offset between similar video
streams. The motivation of the presented work is lack of
the on-line video processing solutions. Having two or more
video streams, the goal is to find their time shift in real-
time. The video analysis should be done on-line and based
mostly on visual content.

The presented approach is focused on visual content anal-
ysis. The previous approaches, analyzing the visual video
content on-line in real-time, are based mostly on global
features are poorly robust to geometrical transformations
that led presented research to employ local features and
visual vocabularies.

The visual vocabulary method was introduced by Sivic and
Zisserman (2006). Motivated by text retrieval techniques
where the document is represented as a set of textual
words, the method represents the image content using
visual words. Images are analyzed and local features are
extracted. Having the visual vocabulary, the local image
features are translated into pre-trained visual words. The
image content is then represented as a set of visual words
(also known as set-of-words, bag-of-words or image sig-
nature). The work of Sivic and Zisserman (2006) utilized
widely used SIFT transformation by Lowe (2004) as local
features. The visual vocabulary training was based on
naive k-means algorithm. When introduced, the visual

vocabularies were used in image and object retrieval appli-
cations. Similarly to text retrieval, the database of images
is indexed by inverted file approach. Search for a query
image in database results in immediate returning of a
ranked list of documents (key frames, shots, etc.) similarly
to search in text documents.

Later works utilized more types of local image features
such as corner-like detector with full affine adaptation
(Mikolajczyk and Schmid (2004)) or detection of stable
regions (MSERs by Matas et al. (2002)). When the local
features are finally described, the performance of the visual
vocabulary approach correlates to performance of particu-
lar image feature extraction technique. Needs for large and
more discriminative vocabularies lead the research to find
faster clustering methods. Two significant methods were
developed: hierarchical k -means (Nister and Stewenius
(2006)) and approximated k-means (Philbin et al. (2007)).
The developed methods allow creation of vocabularies with
size about 1M of visual words with reasonable time and
computational cost.

The later research experimenting with different translation
schemas when translating the local image features into
bag-of-words showed that the discriminative power of the
vocabulary could be improved not only by extending the
vocabulary size. Instead of the standard approach, where
one local feature is translated in just one visual word, a sin-
gle image feature could be assigned to several visual words.
The approach is known as soft-weighting. The examples
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of different soft-weighting results are published by Philbin
et al. (2008) and Jiang et al. (2007). Further improvements
in precision and number of retrieved candidates were done
by Chum et al. (2008), where authors employed minimal
hashing algorithm and later also utilized the geometrical
information from local features (Chum et al. (2009)). The
methods dealing with NDID (Near-Duplicate Image De-
tection) or NDSD (Near-Duplicate Shot Detection) are
mainly focused on searching the most similar samples in
the image database. In this case both global image features
(color histograms with locality sensitive hashing) and local
features are used to search for near-duplicates in the large
image database (Chum et al. (2007)).

The paper firstly introduces the overview of two stages of
the video synchronization system. The following Section
contains an overview of state-of-the-art local image fea-
ture extraction and description methods explaining their
crucial attributes for real-time systems. The process of
building the visual vocabulary is described in Section 3
together with vocabulary searching methods. The possi-
bilities of visual words weighting when bag-of-words are
constructed are discussed in Section 4. Sections 6 and 7
describe the experiments - the used data and the explored
transformations and discusses the results.

2. IMAGE LOCAL FEATURES

Real-time applications, such as on-line video synchroniza-
tion introduce specific demands to the commonly used
techniques. The attributes of image local feature extrac-
tion methods are stability, repeatability, and robustness
to several types of transformations or distortions (Mikola-
jczyk et al. (2005). The characteristic of feature descriptor
is its discriminative power. Usually, the more powerful
the feature extraction and description methods are, the
higher is their time cost. For the real-time applications
dealing with consecutive video-frame processing, the meth-
ods performance could be decreased at the expense of
execution time increase. The computational cost demands
also deriving the size of the visual vocabulary.

The local image features can be constructed on two fun-
damental image structures: corners or regions. The de-
tected local image features are expected to be invariant
to geometric and illumination changes. Different detec-
tors emphasize different aspects of invariance, resulting
in keypoints of varying properties and sampled sizes. See
examples of local features in Figure 1.
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Fig. 1. Image local feature detection and description.

One subset of detectors analyses the local changes in image
intensity. The scale-adopted Harris function (Mikolajczyk
and Schmid (2004)) is sensitive to corner-like structures.

The Hessian (Mikolajczyk et al. (2005)) function, Differ-
ence of Gaussian (Lowe (2004)) or Laplacian of Gaussian
(Lindeberg (1998)) detect the blob-like structures. The
Harris and Hessian function are extended by characteristic
scale detection which is where some characteristic function
(e.g. Laplacian of Gaussian) attains a maximum over a
scale. To obtain the affine invariance of the detectors,
the affine adaptation process is included that iteratively
adapts the region shape by maximizing the intensity gra-
dient isotropy over the elliptical region. Later published
results by Bay et al. (2006) show that the Hessian function
can be effectively approximated by block filters. The SURF
detector is based on effective platform computation of
Haar-wavelets on integral images. The authors also intro-
duced new descriptors utilizing the same platform.

The approach known as FAST corners (Rosten and Drum-
mond (2006)) employs machine learning to construct a cor-
ner detector that outperforms all know approaches in the
speed point of view. The FAST itself is neither invariant to
scale nor to shear. When full affine invariance is necessary,
the techniques mentioned above (characteristic scale selec-
tion and affine adaptation) can be applied. Unfortunately,
they significantly slow down the process. In the presented
application, only slight geometrical transformations are
supposed so the fully affine invariance is not needed. The
detected corners are described using a gradient location
and orientation histogram (GLOH) designed by Mikola-
jczyk and Schmid (2005).

The region-based detectors are represented by maximally
stable extremal regions (MSER) developed by Matas et al.
(2002). The candidate region is a connected component of
an appropriately thresholded image. The extremal refers
to the property that all pixels inside the MSER have
either higher or lower intensity than all the pixels on its
outer boundary. The process of selecting the threshold
optimizes the region stability to be maximal. Table 1
shows the precisions and speeds of some image local
feature extractors. These preliminary experiments were
evaluated on Kentucky (and Oxford) dataset (see Section 6
for more details) using kd-tree approach dataset (see
Section 3) for vocabulary searching. The image retrieval
precision is used to measure the system performance. The

Table 1. Comparison of local image feature
extractors.

SIFT SURF FAST+GLOH

precision 66.9% 56.9% 32.8%
# of features 1000 500 400

speed[s] 7.2 1.0 0.3

number of features is only orientation number because
the amount of extracted feature depends not only on
image size but also on parameters of the extractor. Also
the method’s speeds depends on the amount of extracted
features. The speed is measured in seconds per frame.
In the on-line real-time video processing systems, the
speed factor is the most crucial. The SURF detector offers
convenient balance between speed, robustness, precision
and discriminative power. The presented system is based
on the SURF detector and descriptor in its extended
version that calculates 128-dimensional feature vectors.
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3. VISUAL VOCABULARY

The idea of visual vocabulary, firstly used in Video Google
by Sivic and Zisserman (2006), brings the techniques
from natural language processing and information retrieval
area. The document (image) is represented as an un-
ordered collection of words (bag-of-words model). In com-
puter vision, the (visual) words might be obtained from
the feature vectors through a quantization process. The
objective is to use vector quantization to descriptors to
translate them into clusters’ labels which represents the
visual words.

The visual vocabulary is built during the training stage.
A part of the data (training data) is used to divide the
descriptor space into clusters. Each cluster is labeled; it
has its own identification number. The vocabulary is a list
of cluster centers and identifiers. The clustering procedure
based on k -means algorithm contains the search step,
when the sample should be assigned to the nearest. The
later research introduced several solutions to avoid time
consuming naive sequential search. Figure 2 schematically
shows the different approaches described in detail below.

(a) (b) (c) (d)

Fig. 2. Clustering strategies - (a) naive sequential, (b)
hierarchical, (c) kd-tree and (d) random forest.

When the size of the resulting vocabulary is small (k <
103), the naive k-means algorithm can be used (Fig. 2(a)).
The time complexity of the k -means algorithm is O(kN),
where N is the number of training feature vectors.
Some applications (e.g. for object retrieval (Philbin et al.
(2007))) need more discriminative vocabulary. One possi-
ble way how to reduce the time complexity is using Hierar-
chical k-means introduced by Nister and Stewenius (2006).
Instead of solving one clustering with a large number of
cluster centers, a tree organized hierarchy of smaller clus-
tering problems is solved (Fig. 2(b)). This reduces the time
complexity to O(N. log k). The problem with Hierarchical
k-means is that it optimizes the problem only locally, per
tree branch (see Eq. 1). Other approach reducing the time
complexity is replacing the nearest neighbor search of k -
means by kd -tree (Fig. 2(c)) or by random forest of kd -
trees (Fig. 2(d)). The Philbin et al. (2007) called this
approach as Aproximate k-means.

The quantization error after clustering procedure is ex-
pressed as a sum of distances of training samples to their
nearest cluster as follows:

D =
1
N

N∑
i=1

d(pi, Q[pi]) (1)

where N is the number of training samples Q is the nearest
cluster center to the sample pi and d is the distance
function.

The preliminary experiments covered the influence of the
vocabulary size and search type to quantization error,
image retrieval precision and speed. The experiments for
error and precision were evaluated for SURF local image
features only and the speed-up factor for both, SURF
and SIFT. The results in Table 2 were obtained using
the Kentucky dataset (see Section 6 for more details).
The speed-up factor of compared clustering strategies is
expressed relatively to naive approach that is used as a
baseline clustering strategy.

Table 2. Comparison of clustering strategies.

clustering
strategy

vocabulary size
100 1k 10k 100k

error
naive 0.442 0.383 0.341 0.298
kd-tree 0.443 0.392 0.357 0.321

precision
naive 52.4% 57.4% 60.0% -
kd-tree 52.5% 55.0% 55.1% 56.9%

speed-up kd-tree 3.5 8.1 12.2 14.0

The visual vocabulary for the video synchronization sys-
tem does not need to have high discriminative power;
therefore the vocabulary of size 1k of visual words is
utilized.

4. IMAGE SIGNATURE

In the presented framework, the image signature is a
collection of weighted visual words representing the image
content. This collection can be seen also as a vector of
visual word frequencies. It degrades to a set-of-words
when the weights represent only the word’s presence.
Otherwise, it is a bag-of-words. Figure 3 shows the process
of describing the image content by an image signature.
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Fig. 3. Image signature extraction procedure.

Having visual vocabulary, for each descriptor of local
features from the image, k words (nearest clusters) are
found. The weight for each word is computed and used
to increase the value of the image signature at the word’s
ID position. The image signature then can be defined as
a histogram of occurred visual words. In recent works,
several weighting schemes were introduced and evaluated.

In the pioneering work by Sivic and Zisserman (2006),
standard weighting used in text retrieval is employed that
is known as ’term frequency - inverse document frequency’
- tf-idf. The term frequency reflects the entropy of a word
with respect to each document unlike inverse document
frequency down-weights words that appear often in the
database. The resulting weight is then:
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tf − idf(w) = tf(w).idf(w) (2)

=
|d(w)|
|d|

. log(
|D|
|D(w)

) (3)

where d is a document (image signature), |d| is a number
of words in d and |d(w)| is the number of occurrences of
word w in d, D is a dataset of all documents and D(w) is
a set of documents containing the word w.

The later works (Philbin et al. (2008), Jiang et al. (2007))
reflected the fact that the quantization effect provides a
very coarse approximation to the actual distance between
two features - zero if assigned to the same visual word and
infinite otherwise. The soft-assignment (soft-weighting)
techniques assign a single descriptor to several visual words
nearby in the descriptor space. Given the sorted list of
k nearest visual words, an exponential function of the
distance to the cluster center used in Philbin et al. (2008)
is

w = exp(− d2

2σ2
) (4)

where d is the distance from the cluster center to the
descriptor point. In practice, σ is chosen so that substantial
weight is only assigned to a small number of cells. The
authors experimentally evaluated and suggest k = 3;σ2 =
6.250. Another approach Jiang et al. (2007) is based on
the rank of the assigned cluster:

w =
1

2i−1
(5)

where i is the ith nearest neighbor.

During the retrieval stage, documents are ranked by their
similarity. One of the frequently used similarity metrics
in text retrieval is normalized scalar product (cosine of
angle) between the query vector q and all document
vectors d in the database. The cosine similarity can be
seen as a method of normalizing document length during
comparison.

sim(q,d) =
q.d
|q||d|

(6)

where . is dot product and || is the vector magnitude. The
cosine similarity of two image signatures will range from
0 meaning independent images to 1 meaning exactly the
same images, since the word weights (e.g. tf-idf weights)
cannot be negative. For the experiments in this work, the
standard tf-idf weighting scheme is used when visual words
are weighted in bag-of-words.

5. TIME SHIFT DETECTION

The time shift detection task is formulated as follows.
Having one reference and one (or more) query video
stream, find the time shift between reference and query
stream. Each incoming frame is translated to represent the
frame by its image signature and then added into frame
buffer. Frame buffer represents the video stream history.
The query frame is then used to search for the most similar
frame in reference buffer. The search step results in the
most probable offset (time shift). Additional step in time
shift detection procedure stores the detected offset for each
time step into histogram of detected offset. The peak in

histogram then represents the time shift. The scheme in
Figure 4 shows the procedure steps.
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Fig. 4. Image signature extraction procedure.

The similarities between the query frame q and the frames
from the buffer of the reference frames d in time t can be
used to express the similarity score of the time-shift i as:

s(t, i) = sim(qt,dt−i), i ∈ {0, . . . , N} (7)

whereN is the buffer size. The results of the function s(t, i)
in time t are similarity scores of time offsets i in interval
0 to N based on distances between the tth query image
and all images from reference buffer. Having the similarity
score in time, is defined the decision function as:

D(t) = D(R(t), R(t− 1), . . . , R(t−∞)) (8)

where R(t) = R(s(t, i)) is the window decision function
working on time interval t, . . . , t−N . Both decision func-
tions results in time offset value. The presented results in
this work are based on window decision function R(t) that
makes an early fusion of similarity scores in time and then
results with the offset with the highest fused similarity
score. The function O(t, i) represents the fusion as:

O(t, i) = w(t)⊗ s(t, i) (9)

where ⊗ is the convolution operation and w is the weight-
ing function. Two weighting functions were designed for
the system - averaging (Eq. 10) and exponential function
(Eq. 11):

wavg(t) =
1
N

(10)

wexp(t) = 1− logN t (11)
The averaging function computes the similarity scores for
the particular time offset i as the average over all previous
similarity scores. The exponential function down-weights
the older results. The decision result is then the time offset
function shift(t) with the highest value of the function
O(t, i) as:

R(t) = shift(t) = arg max
i
O(t, i) (12)

For the purpose of the presented system, we formulated the
final decision function D(t) as the procedure computing
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the histogram H(t, i) of R(t). The location of the best
histogram bin corresponds to the final decision of detected
time shift.

D(t) = rank(H(t, i), 1). (13)

where function rank(L, r) ranks the list L and returns rth

element of the ranked list.

Along with the detected time shift, the confidence level
κ(t) of the decision is needed to approve or refuse the time
shift decision. The confidence level computation is based
on the ratio of the two best bins from the histogram of
time shifts as:

κ(t) =
rank(H(t, i), 1)
rank(H(t, i), 2)

. (14)

The confidence level represents the certainty of obtained
statements about the detected time offset and is used as
the main indicator of quality of the method.

6. EXPERIMENTS

Two different datasets were used for the presented exper-
iments. The Kentucky dataset was used to analyze the
characteristics of various parameters of feature extraction
and visual vocabulary building. The TRECVID 2009 data
BBC subset was used to evaluate the time shift detection
method.

The Kentucky dataset was created as a recognition bench-
mark at Kentucky University by Nister and Stewenius
(2006). The set consists of 2550 groups of 4 images each,
that is 10200 images in total. The size of the images is
640x480 pixels. This dataset was used to compare the
performance of different image feature extraction methods,
search types of k -means algorithm and influence of the
vocabulary size to its performace.

The TRECVID 2009 data BBC subset (Smeaton et al.
(2006)) contains 77 video files. The size of video frames is
352x288 pixels. The video streams are coded according to
MPEG1 with 25 fps. The TRECVID video data contains
a variety of challenging disruption itself, especially for the
time video synchronization task.

The TRECVID videos begin with an initialization shot
(cca 40-60 seconds) with color initialization stripes where
very few local features are detectable. Furthermore, many
of the shots are static or almost static, so the frame
comparison does not favor any frame and the detection
does not decide for any particular time shift.

The query video streams were created artificially - the real
reference video was distorted and delayed. In this work, we
focused on fundamental types of video distortions:

• uniform scale transformation,
• partial occlusion of the video by static banner,
• white noise.

The examples of the simulated distortions are shown in
Figure 5.

All experiments used the visual vocabulary built on a
different dataset than the testing one. It simulates the real
situation of on-line video processing, where the system
might work on different data then was trained on. The

Fig. 5. Examples of video distortions (top - overlaid
banner, 90% resize; bottom - 30% noise, blur with
σ = 3.0).

visual vocabulary was built upon the Kentucky dataset
and all 10200 images were used to train the vocabulary.

7. RESULTS

When detecting the time shift between two similar video
streams based on image content analysis, the most crucial
is the content itself. When the image entropy is low or
constant over the time, it is not possible to neither detect
any features and their changes nor synchronize the video
streams. Each experimental run was done on all 77 video
files. The result of the processing of each video file is the
detected time shift and confidence level κ(t) for each video
frame. Due to the different length of the video initialization
shot at the beginning of each video, the results are aligned
in time domain. The presented results are then averaged
over all of the runs for each particular experiment.

Two ground-truth time delays were used in experiments:
25 and 250 frames (d25 and d250 ). The experiment results
are presented using graphs where y-axis is the confidence
level κ(t) of the detected time-shift and x-axis is the
time from the beginning of the video sequence in frames.
When the confidence level is not defined, the method
wrongly detects the time shift or fails entirely. The positive
detection of the time shift is represented by the positive
confidence level value. In general, the graphs shows the
required time to positively detect the time shift.

7.1 Window Decision Function

The first experiments were focused on comparison of two
weighting functions: average and exponential (Eq. 10 resp.
Eq. 11). The functions are used for the early fusion of
similarity scores in the window decision function (Eq. 8.
When undistorted data was used for the test, no significant
difference appear (see Figure 6).

The tests with query video resized to 90% of the original
size revealed that when query video is delayed by 25 frames
and also by 250 frames, the exponential weighting function
outperforms the averaging function.
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Fig. 6. Comparison of window decision functions (top -
without distortion, bottom - resize to 90%).

7.2 Time Shift Detection

The robustness and precision of the time shift detection
algorithm was evaluated on several video distortions and
transformations that are likely to occur in real appli-
cations. Such cases are occlusion, noise, blur, and scale
change.

The robustness to partial occlusion of the video frames
was tested using overlaid banner. The graph in Figure 7
shows that the precision of the detector is affected by
partial occlusion for longer delays. The robustness to the
noise was tested with the noise level in between 0%-30%.
Figure 8 shows how the detector precision decreases with
increasing level of noise. The experiments with blurring
have proven the expected properties about the used feature
extractor. The SURF features are sensitive to blobs so
their repeatability decreases very slowly with increasing
amount of blur. Because the system’s properties directly
depend on the robustness of the feature detector, the
algorithm performance is only slightly affected by smooth
level as might be seen in Figure 9.

The computational costs of the algorithm depend on
amount of extracted features. Data used in evaluation
contain cca 200 features per frame. The algorithm was
able to process 13 frames per second on the desktop PC
Intel Core Duo 2.4GHz, 3.5GB.

8. CONCLUSIONS

The objective of the presented work was to design and
evaluate the real-time on-line system for visual-content-
based video analysis. The solution is based on the visual
vocabulary and image signatures. Several types of video
distortions were addressed in the experiments. The results
of evaluated experiments show that the proposed solution
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Fig. 7. Partial occlusion by a inserted banner.
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is usable for the on-line real-time video analysis and video
content comparison. The solution can be used as the
base for the other methods; for example, for dealing with
geometrical transformation between video streams. The
knowledge of the geometrical transformation might be use-
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ful when non-uniform geometrical distortion is expected
and the automatic video quality control task analyzing
noise ratio, contrast changes, color bias, etc. is required.
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