
Hacking NetCOPE to run on NetFPGA-10G

Pavol Korcek, Vlastimil Kosar,
Martin Zadnik, Karel Koranda

Brno University of Technology, Czech Republic
{ikorcek, ikosar, izadnik}@fit.vutbr.cz

xkoran01@stud.fit.vutbr.cz

Petr Kastovsky
INVEA-TECH, Czech Republic

kastovsky@invea.cz

Categories and Subject Descriptors
C.4 [Performance of systems]: Design studies

General Terms
Design, Performance

Keywords
FPGA, NetCOPE, NetFPGA-10G

1. INTRODUCTION
In these days, it is quite common that researchers have an

access to a high-speed network infrastructure with 10 Gbps
throughput or higher. To fully explore capabilities of such
a network, there is a strong initiative to develop hardware-
accelerated network cards which are capable of processing
network traffic at line rate without a packet loss. The NetF-
PGA card developed at Stanford University is a straight-
forward example.

In this abstract, we report on our exercise to port our de-
velopment framework, called NetCOPE, on NetFPGA-10G
card [1] which comes with no software or gateware support
so far. The NetCOPE [2] is a configurable gateware and soft-
ware environment which enables rapid development of net-
work applications on the FPGA acceleration boards. Orig-
inally, it was developed by CESNET for COMBO cards [3]
but since both cards share much in common porting it should
be relatively easy. NetFPGA with NetCOPE can be imme-
diately used as a high-speed packet capture NIC and ex-
tended with already available applications’ cores such as
packet classification [4], network monitoring center [5], flow
metering [6], packet generator [7] and others.

2. NETCOPE CONCEPT
The primary goal of NetCOPE is to create a vendor-

independent environment that would abstract designer from
hardware specifics of various cards. To this end, it pro-
vides unified gateware API to various controllers of periph-
erals such as network interfaces, external memories and PCI-
Express bus. It also contains software drivers, libraries and
tools to manage operations with the card and data transfers
between the card and a host machine. The secondary goal
is to provide efficient resource utilization to achieve high-
processing performance at the hardware as well as at the
software side.

The NetCOPE gateware is composed of three main mod-
ules: Generic Interconnection System (GICS) [8], Network

PCI−Express bridge

module

User
application

N
et

w
or

k
in

te
rf

ac
es

D
es

cr
ip

to
r

m
an

ag
er

DMA moduleApplication core

GICS

Network

Figure 1: NetCOPE architecture

module and DMA module. A specific user application core
communicates with all three modules as shown in Figure 1.
Network module allows the application core to attach arbi-
trary information (such as timestamp) to an incoming Eth-
ernet frame prior to entering its buffers. Then, it streams out
the received frames when the application core is ready. The
application core processes the frame and uses DMA mod-
ule to transfer the data stream to the host memory. DMA
module supports up to 32 DMA channels among which the
incoming data may be distributed (e.g., flow-wise). GICS
comprises a variable-width bus and generic modules which
together build an interconnection infrastructure which is
connected to PCI-Express module. GICS infrastructure pro-
vides slow register interface or faster memory interface for
the application core. GICS connects DMA module as well
and may also provide additional DMA interface to applica-
tion core. Except these substantial parts of the NetCOPE
platform, there are also some extra modules providing spe-
cific functionality – Timestamp module capable of generat-
ing 64-bit timestamps synchronized by GPS pulses, modules
to work with stream of packets or NetCOPE clock compo-
nent which may be parametrized to generate user-defined
frequency of clocks for the application core. The applica-
tion core is asynchronously separated from all NetCOPE
modules.

At the software side, the NetCOPE drivers cover basic
input/output operations with hardware card, card initial-
ization, after-boot process, loading gateware, as well as fast
DMA transfers using ring buffers. Libraries sitting on top
of these drivers provide higher-level API (e.g., libpcap) to
access these functions. The most interesting is probably
zero-copy data transfer which is achieved by mapping the
driver’s ring buffers into the contiguous application address
space. Moreover, the libraries allow to access same data by
several applications concurrently. User application can also
read from multiple DMA channels but, based on our experi-

2011 Seventh ACM/IEEE Symposium on Architectures for Networking and Communications Systems

978-0-7695-4521-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ANCS.2011.40

217

Resource Used Available Percentage
BlockRAM/FIFO 93 324 28%
Slice LUTs 41,549 149,760 27%
Slice Registers 46,920 149,760 31%

Table 1: Resource consumption

ence, the highest throughput is achieved if each application
is locked to a given CPU core and assigned single DMA
channel. In the basic NetCOPE version, there is separate
DMA channel per each network interface.

3. EVALUATION
While porting NetCOPE to NetFPGA we had to face

some issues. First of all, NetFPGA is a single card directly
equipped with network interfaces while COMBO is a bundle
of two cards, mother card and an add-on interface card. As
a consequence, it was necessary to move network modules
previously placed in FPGA on add-on card to the gateware
of the main card. Further, we had to enlarge network mod-
ule to support four interfaces and propagate this information
into an address space. Due to four interfaces we also instan-
tiated DMA module with support of four DMA channels.
In order to propagate the information about the modified
address space and about the number of DMA channels into
the driver we use our own identification component in addi-
tion to PCI-Express identification. This allows the driver to
transparently work with both cards. Both cards also differ in
bijouterie connected to their FPGAs but for our preliminary
experiments these are irrelevant.

There were two software modifications necessary. The first
was to extend PCI identification table of the driver so it can
correctly recognize the card and the second was a minor
modification of phyter configuration routine due to different
phyter vendor.

The hacked NetCOPE was synthesized into gateware for
FPGA on NetFPGA card. Xilinx ISE reports approx 30%
of chip utilization (details are in Table 1) after successful
place&route with clock frequency of 200 MHz. The basic
NetCOPE uses a simple application core which wires to-
gether Network and DMA module and operates at the same
frequency as NetCOPE itself.

The packet capture results (tested with Spirent Test Cen-
ter) are not surprising as these are similar to those that we
have obtained with COMBO cards and are close to the limit
of PCI-Express x8 bus when all overhead of PCI-Express
is accounted for, such as 8/10 encoding, overhead of PCI-
Express packet headers, flow control packets, link layer pack-
ets, etc. [9]. Both cards are compatible with PCI-Express
version 2 slot but since both cards use Virtex 5 FPGAs
they can only reach version 1 performance due to limited
throughput of their IOs. Figure 2 displays the achieved
throughput and CPU load when simultaneously receiving
packets on two network interfaces without any packet losses
according to RFC 2544. The incoming frames were deliv-
ered to the simple software application which counted the
number of received frames. The application was running as
two processes each dedicated to a particular DMA channel
and both channels were equally utilized. The configuration
of the host is Intel Xeon CPU E5335 @ 2.00 GHz, Supermi-
cro X7DB8 motherboard, 10 GiB DDR2 memory, OS Linux
2.6.18-164.6.1.el5.

 10

 11

 12

 13

 14

 0 2000 4000 6000 8000 10000
 0

 20

 40

 60

 80

T
hr

ou
gh

pu
t [

G
bp

s]

C
PU

 L
oa

d
[%

]

Frame length [B]

Throughput
CPU load

Figure 2: Achieved throughput and CPU utilization

for various length of packets

The increased throughput at the shortest frames is caused
by smaller overhead of our DMA transfer. The Ethernet
standard requires a gap between subsequent packets but this
may be omitted if these packets are grouped together and
transferred as a payload of a large PCI-Express packet.

4. CONCLUSION
In summary, porting NetCOPE to NetFPGA-10G was

successful. It allows NetFPGA to capture and transfer pack-
ets in the host at high speed. Our future work will focus on
the on-the-fly reprogramming of FPGA (without rebooting
the host) which is supported on COMBO but has not been
ported to NetFPGA yet.

Acknowledgements
This work has been partially supported by the Research
Plan MSM 0021630528, IT4Innovations Centre of Excellence
project CZ.1.05/1.1.00/02.0070, the grant BUT FIT-S-11-1
and Sec6net project VG20102015022.

5. REFERENCES
[1] Netfpga web page, www.netfpga.org - netfpga-10g.

[2] T. Martinek and M. Kosek. NetCOPE: Platform for
rapid development of network applications. In Proc. of

2008 IEEE Desing and Diagnostics of Electronic

Circuits and Systems Workshop, pages 219–224, 2008.

[3] Combov2 fpga boards. http://www.invea-tech.com/
products-and-services/combo-fpga-boards.

[4] T. Dedek and et al. Hardware Packet Filter with IPv6
Support. In Networking Studies IV, CESNET, pages
155–166, 2011.

[5] P. Celeda and et al. Hamoc - hardware-accelerated
monitoring center. In Networking Studies IV, CESNET,
pages 107–133, 2011.

[6] M. Zadnik and et al. FlowMon for Network Monitoring.
In Networking Studies IV, CESNET, pages 45–56, 2011.

[7] J. Matousek and P. Korcek. Precise IPv4/IPv6 Packet
Generator Based on NetCOPE Platform. In Proc. of

2011 IEEE Design and Diagnostics of Electronic

Circuits and Systems, pages 319–324, 2011.

[8] T. Malek, T. Martinek, and J. Korenek. Gics: Generic
interconnection system. In Proc. of 2008 International

Conference on Field Programmable Logic and

Applications, pages 263–268, 2008.

[9] A. Goldhammer and J. A. Jr. Understanding
performance of pci express systems, 2008.

218

