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1.  The runs differ in the types of features used. All runs use several bag-of-word representations fed 

to separate linear SVMs and the SVMs were fused by logistic regression. Visual and audio features 

were used as well as metadata. We added contextual features extracted from the video from which a 

shot originated. 

 F_A_brno.run1 (run1) – Only visual information. Dense sampling and Harris-Laplace detector 

with SIFT and RGB-SIFT descriptors 

 F_A_brno.run1 (run2) – The same as in run1 with added features from audio and metadata. 

 F_A_brno.run3 (run3) – The same as in run2 with added contextual features extracted from 

the whole video. 

2. Audio and metadata significantly improves results. Even grater improvement was achieved by 

using the contextual features. 

 

Content-based Copy Detection 
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1. One run submitted in two versions (the difference is only in relevance threshold setting) 

 brnoccd: SIFT and SURF combination, bag-of-words (visual codebook: 100k size, 4 nearest 

neighbors used in soft-assignment), inverted file index, geometry (homography) based image 

similarity metric 

2. What if any significant differences (in terms of what measures) did you find among the runs? 

 only one setting used – no differences 

3. Based on the results, can you estimate the relative contribution of each component of your 

system/approach to its effectiveness? 

 slow search in reference dataset due to pure indexing effectiveness 

4. Overall, what did you learn about runs/approaches and the research question(s) that motivated 

them? 

 change the way of describing the video content – frame based (or key-frame based) approach 

is not sufficient 

 



Semantic indexing 

Our approach to semantic indexing combines supervised machine learning, classifier fusion and 

description of video shots in terms of frequencies of local visual and audio primitives, and 

frequencies of words in associated metadata. Similar approaches were previously shown to be 

suitable for this type of tasks [Lazebnik et al., 2006; van de Sande et al., 2010; Snoek et al., 2009]. 

Additionally, our approach utilizes contextual information extracted from the whole video in addition 

to the information extracted from the particular shot. The processing pipeline without the contextual 

features is shown in Figure 1. 

To be able to process audio information the same way as image information, spectrograms were 

computed for short audio segments. The construction of audio and video shot descriptors can be 

then divided into three separate steps. First, a sampling was used to select parts of the video which 

are of interest. The appearance of the selected video parts was then expressed by a 

multidimensional feature vector which is resistant to small displacements and other local 

transformations while retaining most of the useful information. Based on the local descriptors, a bag-

of-word representation describing the whole shot was created.  A shot was represented as multiple 

bag-of-word vectors, each based on different combination of sampling and appearance description. 

Linear support vector machine (SVM) classifiers were trained separately on these bag-of-word 

representations and their predictions were fused by logistic regression.  An overview of the whole 

processing pipeline is shown in Figure 1. 

 

Figure 1 – The processing pipeline without contextual features. Key-frames and audio segments (spectrograms) are 
extracted from a video shot. Spatial sampling is performed. Local patches are described by SIFT and RGB-SIFT. BOW 
representations are computed by codebook transform. SVM classifiers are trained for each representation and the 

classifiers are fused by logistic regression.  

The contextual features were computed from the whole video as histograms of responses of the 

classifiers described in the previous paragraph. These features give information about the 



distribution of semantic concepts in the video which is intuitively important for shot classification as 

the semantic concepts presents in shots are correlated in a video.  

The following text explains in detail each part of the processing pipeline and also the results achieved 

in TRECVID 2010 evaluations. First, the image sampling is explained together with appearance 

description. Next, the transformation to bag-of-word representation is discussed followed by 

explanation of audio and metadata feature extraction. The subsequent part then gives details on the 

machine learning. Next, the context features are explained. Finally, the achieved results are 

presented together with discussion of contributions of the individual parts of the pipeline. 

Local patch description 

The local patches were parametrized using the original SIFT descriptor by Lowe [Lowe, 1999] and 

RGB-SIFT [van de Sande et al., 2010]. The SIFT descriptor computes Histograms of Oriented Gradients 

(HOG) on a 4 x 4 grid centered on an image patch. The computed descriptors are vectors of 128 

values created by concatenating the 16 histograms. The magnitude of a single pixel is distributed 

between neighboring histograms according to a spatial Gaussian filter which alleviates the boundary 

effect. The SIFT descriptor is invariant to shifts and scaling of the image intensity channel. It encodes 

the shape of an image patch while being resistant to small displacements and geometric 

transformations. 

The RGB-SIFT descriptor [van de Sande et al., 2010] computes SIFT independently on R, G and B 

image channels. For computational reasons, Principal Component Analysis was used to reduce 

dimensionality of the computed descriptors to 198. 

Codebook transform 

Codebook transformation creates compact, yet powerful representation. In the original form 

[Lazebnik et al., 2006], the visual features are assigned each to the most similar visual word based on 

distance in the visual descriptor space. The prototypes of the visual words together form a codebook 

– thus the name codebook transformation. The codebook transformation produces bag-of-word 

representation which captures occurrence frequencies of the visual words in a document while 

discarding any spatial information. Simple ways how to retain some of the spatial information exist 

[Lazebnik et al., 2006], but these were not used in our system. The further text explains the specifics 

of our approach. 

Separate codebooks were created of each combination of sampling and descriptor. The codebooks 

were constructed by running 15 iterations of k-means algorithm on 600 MB of randomly selected 

local features from the training dataset. The size of all codebooks was 4098. 

To minimize the amount of lost information, the local features were translated to visual words by 

soft-assignment instead of hard-assignment. Particularly, codeword uncertainty 0 was used. The 

kernel was Gaussian and its size represented by standard deviation was equal to average distance of 

the closest words in the particular codebook. The resulting histograms were not normalized 

Audio feature extraction 

For parametrization of the audio information, an approach similar to parametrization of the visual 

information was used. An audio segment representing each shot was extracted from the audio 

stream. The minimum length of the segments was 10 seconds and overlap was allowed as necessary. 



Mel-frequency spectrograms with 128 frequency bands, maximum frequency 8KHz, window length 

100ms and overlap 80ms were computed from these segments. Dynamic range of the spectrograms 

was reduced to fit into 8-bit resolution. The spectrograms were then processed as images by dense 

sampling and SIFT descriptor. BOW representation was constructed for the spectrograms by 

codebook transform the same way as for images. The audio features are denoted as SPEC in the 

results. 

Metadata 

From the metadata, XML tags were removed together with any non-alphabetical characters and 

words where lower-case character was followed by upper-case character were split. Stemming was 

not performed on the data. Although, the data includes several non-English videos, we did not 

employ any machine translation, as the ratio of the non-English videos is relatively small and it 

should not seriously influence the results. The words were then converted to BOW representation. 

In addition to the simple BOW representation for metadata, Explicit Semantic Analysis (ESA) was 

used. ESA is a vector space model for computing the similarity of texts based on the Wikipedia. ESA 

maps each word to the space of Wikipedia articles. The machine learning algorithm is used to assess 

the strength of association between each word and each concept from the Wikipedia. It computes 

word similarity in the dimensions defined by the articles. For example, a word can obtain vector (1.2, 

0.1, 3.5, …) where the similarity between the word and the first article in Wikipedia is 1.2, the 

similarity between the word and the second article is 0.1 and so on. The cosine of the angle between 

the vectors is used to measure similarity of individual texts. For more details on ESA, see [Gabrilovich, 

2007].  

ESA was used for two types of features. One type of features comprises of similarities to the 

semantic concepts for which classifiers should be created (METADATA ESA VIDEO). The other types 

comprises of similarities to all videos from the training set (METADATA ESA VIDEO). The simple BOW 

representation is denoted in results as METADATA BOW. 

Note that when using the metadata features, all shots from a video are represented by the same 

feature vector. 

Classification 

The schema of the classification is shown in Figure 2. The main issues for the machine learning part 

were how to merge information from multiple sources and how to manage relatively large dataset 

with 130 classes. Generally, SVM is the most common choice of learning algorithm for classification 

problems where the feature vectors are bags-of-visual-words [Lazebnik et al., 2006; van de Sande  et 

al., 2010; Snoek et al.,  2009] and information from different sources is usually merged in kernel 

[Snoek et al.,  2009]. Another possibility is to perform late fusion of separate classifiers each based on 

the individual information source.   

For computational reasons, we decided to use linear SVM to learn separate classifiers for each type 

of bag-of-word representation and to fuse the separate models linearly by adapting weights of 

individual models by logistic regression. This approach allowed us to utilize all annotated samples 

from the training set.  

LIBLINEAR [Fan et al. 2008] implementation of SVM solver and logistic regression was used to learn 

all models. The library was slightly modified to allow terminating computation after a fixed number 

of iterations. 



Figure 2 SIN - Classification schema 

The soft margin parameter of SVM and the regularization parameter of the logistic regression were 

both selected separately by grid search with 5-fold cross-validation. The objective function for this 

parameter optimization was the average precision and the parameters were optimized for each class 

separately. To utilize all training data for both SVM learning and for the logistic regression, the five 

SVM classifiers created in cross-validation produced responses for the samples from the training set 

which were not used to train the particular classifier. Logistic regression was than trained on this 

whole dataset merged from responses of the five classifiers. The final SVM classifiers were trained on 

the whole training set and the final fusion was also learned on the full dataset.  

Contextual Features 

The classifiers described in the previous text use information only about single shot, even though the 

shots in a video and their semantic concepts are strongly correlated. In order to exploit this 

correlation, we applied the semantic classifiers for shots to the whole dataset and computed 

histograms of their responses for each video. These histograms were then used as features vectors 

fro shot classification as the other features described earlier.  

The histograms consisted of 8 equidistant bins with the outer bins set to 5% quantiles. The dimension 

of the resulting feature vectors obtained by concatenating the histograms of individual semantic 

classes was 2760. 

Note that with the contextual features, all shots from a video are represented by the same feature 

vector. 

The runs 

We submitted three different runs which differ in types of features used. The complete overview of 

the features used is summarized in Table 1. 

 RUN1 Used only visual information. It combined HARLAP, DENSE8 and DENSE16 sampling with 

SIFT and rgb-SIFT descriptors. 

 RUN2 extended RUN1 with audio information and metadata. 

 RUN3 extended RUN1 with the contextual features. 

Results 

The results achieved on training set in five-fold cross-validation by separate types of visual features 

are shown in Table 1. The results were measured as mean average precision across all semantic 

classes. It can be clearly seen that dense sampling provides generally better results than Harris-

Video-shots 

BOW descriptor 1 Linear SVM 

Logistic regression BOW descriptor 2 

BOW descriptor N Linear SVM 

Linear SVM 



Laplace detector. However, these observations are no longer always valid when looking at 

performance on separate classes. The audio feature perform significantly worse than image featurs. 

The metadata provides results comparable to the Harris-Laplace sampling of images except 

METADATA ESA CONCEPT which gave the worst results.  

The contextual features are in all cases better than the features extracted from a shot. This is 

surprising as with the contextual features, all shots from a video are represented by the same feature 

vector and, therefore, get the same classifier responses. 

Results of the official runs assessed by NIST are shown in Table 2. The results show that adding the 

audio and metadata modalities (RUN2) improves results significantly over the visual features (RUN1). 

Adding the contextual features (RUN3) improves results significantly as well. The achieved results on 

the test set are worse than the best results achieved in the evaluations. Most of this performance 

gap can be explained by the fact that we use only linear SVM. From our other experiments, we 

expect that switching to non-linear SVM would improve the results by 50–70 %. Also, we use only 

training data specific to TRECVID 2011 and utilizing past data or data from other sources would 

improve the results as well. Detectors of object classes such as faces, people and cars used as feature 

extractors would also improve results and we plant to follow this idea in the future.  

Descriptor Mean AP Contextual 

HARLAP SIFT 0.165 0.221 

HARLAP RGB-SIFT 0.170 0.227 

DENSE8 SIFT 0.197 0.214 

DENSE8 RGB-SIFT 0.215 0.222 

DENSE16 SIFT 0.215 0.222 

DENSE16 RGB-SIFT 0.230 0.231 

SPEC. DENSE8 SIFT 0.124 0.155 

SPEC. DENSE16 SIFT 0.123 0.159 

METADATA BOW 0.162  

METADATA ESA CONCEPT 0.107  

METADATA ESA VIDEO 0.160  
Table 1 Results of individual feature types on the training set from TRECVID 2011 in cross-validation achieved by the 

separate types of features on all 345 classes. 

RUN name Full  Lite 

RUN1 0.089 0.068 

RUN2 0.108 0.080 

RUN3 0.128 0.099 

TRECVID best 0.173 0.147 

TRECVID median 0.108 0.055 
Table 2 Results of the official runs submitted to TRECVID 2011 SIN. Results for Full (evaluated 50 features) and Lite 

(evaluated 23 features) evaluation are shown as Mean Average Precision.  

 

 

 

  



Content-based Copy Detection 

Our CCD system is composed from three main parts: key-frame detection, image retrieval and copy 

candidate verification. The goal of the system is to find the possible existence of the part of the query 

video in the reference dataset and detect the positions of the similar video-segments.  

Having the reference database prepared, the query video is processed and query key-frames are 

detected, described and searched in database. The candidates (returned reference key-frames) of 

adjacent query key-frames are grouped into larger segments when possible. The candidate segments 

are then verified using more precise frame-content analysis with geometrical constraints and the 

location of the detected copy segment is refined. 

The presented system describes the visual content of video frames using low-level local image 

features (SURF [Bay et al., 2006]  and SIFT [Lowe, 2004]) and bag-of-words representation of those 

features (visual codebook approach [Sivic and Zisserman, 2003]). Image features such as color 

histograms, texture analysis, gradient distribution, etc. are employed only for key-frame detection.  

Key-frame detection 

The reference and query videos are firstly processed to analyze and detect key-frames. Besides the 

given key-frames by NIST, we are applying the same algorithm for key-frame detection to both, 

reference and query data, to increase the probability of detection of the key-frame with similar visual 

features. Our method analyses the difference between frame’s features; Euclidean distance for 

metric features and cosine distance for bag-of-words representation. The differences are evaluated 

over flowing window (10 samples in average). Figure 3 shows the output signal with candidates shot 

boundary candidates (red lines) and key-frame candidates (blue lines). 

 

Figure 3 Similarity of visual content of adjacent video frames with shot boundary (red) and key-frame 
(blue line) detected candidates. 

The candidates are then chosen after applying more constraints: too short shots, similar adjacent 

key-frames, etc. 

Image retrieval 

The visual codebook [Sivic and Zisserman, 2003] is trained in off-line stage using the descriptors from 

training data. The goal of the visual codebook is to represent the distribution of descriptors in the 

descriptor space. From the amount of existing approaches, the presented system uses visual 

vocabulary based on k-mean clustering with kd-tree search structure and soft-assignment schema 

[Beran et al., 2010a]. The visual codebook and translation procedure has the following setting:  

 descriptors space dimensionality (128 for SIFT and 64 for SURF),  



 100.000 visual words in the codebook,  

 4 nearest neighbors in soft-assignment [Philbin et al., 2008],   

 standard TF-IDF weighting schema using logarithmic function [Manning and Hinrich, 2008].  

The bag-of-words of the key-frames are efficiently stored in database (PostgreSQL) and Generalized 

Inverted (document) Index [PostgreSQL, 2008] is used to speed up the queries. The cosine distance is 

used as the similarity metric for bag-of-word comparison. 

Fusion of retrieved candidates (two retrieval results – SIFT based and SURF based) favors the 

candidates retrieved in both results. Having the sorted list of candidates from more retrieval runs 

  
    (where   is number of retrieval results for particular reference video    ), increase the 

confidence of the best candidate by simultaneous application of the following equation for   {   }:  

  
      

    (    
   )    

    

Experimenting with more fusion functions, this approach gives the best results. 

Copy candidate verification 

Having the list of candidate key-frames from the reference dataset for each key-frame from the 

query video, first, the block segments are constructed from adjacent query key-frames referencing to 

the similar video. Then each candidate reference segment (reference video segment) of the each 

query segment (query video segment) is analyzed using following procedure 

1. The reference-frame to query-frame homography     is computed and classified. When  

    is classified as too-distorted, the candidate segment is refused and next candidate is 

analyzed. The     is applied to all query video frames to refine the possible geometrical 

transformation between these video sequences. 

2. Search for left and right cuts in both, reference and query sequences. The cut probability is 

evaluated using the same metric as in the key-frame detection method. 

3. Evaluate the visual similarity of the overlapped part of the reference and the query 

sequence. If too-different, discard the candidate and process the next one. 

4. Refine the time offset between reference and query sequences [Beran et al., 2010b]. 

5. Find final borders of overlapping reference and query segments. 

Each query segment might reference to ~2000 candidates, but most of them are refused at the very 

beginning of the verification procedure. The reference candidates are then sorted according to 

accumulated characteristics (scores and errors) and reported. 

Results 

The experiments with the system reveal two major parts of interest: visual codebook setting 

correlating to index performance and video-content description approach. Visual codebook setting 

seems to be the crucial for index performance. The used setting (codebook size, soft-assignment 

parameters, etc.) caused that the usage of inverted-file index poor efficiency. Video-content 

description method was taken from image retrieval system with no adaptation to video (temporal) 

data. Also, the system was not especially re-designed for the introduced TRECVID set 

transformations, so e.g. vertical flip transformation is undetectable by our CCD system. 

Our CCD system shows very good results in precision of detected copy segments measured by 

defined F1 metric [Smeaton et al., 2006] for positively detected samples. 
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