
Fast and Accurate Plane Segmentation

in Depth Maps for Indoor Scenes

Rostislav Hulik, Vitezslav Beran, Michal Spanel, Premysl Krsek, Pavel Smrz

Brno University of Technology, Faculty of Information Technology

IT4Innovations Centre of Excellence

Bozetechova 2, 61266 Brno, Czech Republic

{ihulik, beranv, spanel, krsek, smrz}@fit.vutbr.cz

Abstract — This paper deals with a scene pre-processing task –

depth image segmentation. Efficiency and accuracy of several

methods for depth map segmentation are explored. To meet

real-time capable constraints, state-of-the-art techniques

needed to be modified. Along with these modifications, new

segmentation approaches are presented which aim at

optimizing performance characteristics. They benefit from an

assumption of human-made indoor environments by focusing

on detection of planar regions. All methods were evaluated on

datasets with manually annotated real environments. A

comparison with alternative solutions is also presented.

Kinect; depth map segmentation; plane detection; computer

vision; range sensing

I. INTRODUCTION

Image segmentation is a well-studied computer vision

task. Although depth map segmentation has common roots

with greyscale image segmentation, respective algorithms

generally differ. It is due to the presence of an additional

dimension – the depth. The depth information (and consecu-

tive normal estimation from depth images) is beneficial as

regions can be distinguished by a step in the depth or the

direction of normal vectors. Consequently, segmentation

algorithms are based primarily on depth- and normal com-

parison methods.

Existing approaches differ in their accuracy and speed.

To guarantee real-time performance, applications in robotics

search for a precise segmentation that makes use of simplest

possible methods. The simplification can come from an

additional constraint on the environment in which a robot

operates. For example, human-made objects (artefacts) can

be mainly expected in indoor scenes. The a priori

knowledge of their common shapes characterized by planar

regions can lead to special segmentation approaches – plane

detection (prediction).

The research reported in this paper focuses on plane de-

tection in indoor-scene depth maps. The task is taken as a

pre-processing step for further planar object detection (floor,

walls, table-tops, etc.) or rough segmentation of foreground

and background objects. Although widely-used devices for

capturing scene depth data (such as Kinect, PrimeSense, or

XtionPRO) provide also visual RGB data, we focus solely

on the depth data in this paper. The methods are then easily

adaptable to data from other sensors such as LIDARs.

Today, there is a large number of depth segmentation al-

gorithms usable in robotics. However, only few of them

meet strict low computational power consumption con-

straints. We studied and compared existing methods and

designed and implemented various modifications to reach

real-time capable performance while retaining the accuracy.

Common low-cost depth sensors suffer from specific

problems linked to such type of sensors. The major persist-

ing problem is a structural noise present in the depth data.

All reported methods are therefore optimized to depress this

kind of problem. A general intention is to wider applicabil-

ity of cheap range sensors in the field of precise and fast

environment perception.

Figure 1. Indoor kinect depth map example

The rest of this paper is organized as follows: The next

section discusses previous work related to our research.

Section III takes on existing methods for depth map seg-

mentation and proposes their optimization with the aim to

achieve fast performance while keeping their stability and

precision. Section IV presents novel approaches for segmen-

tation of depth maps focused on planar regions typical for

indoor scenes. Experimental results and a comparison of

existing and new methods are discussed in Section V.

II. RELATED WORK

Last years brought a boom of cheap depth sensors used

for localization, map building, environment reconstruction,

object detection, and other tasks in robotics. A rapid devel-

opment of various methods for depth map processing fol-

lowed. Fast object detection usually incorporates pre-

processing of depth data.

Pulli and Pietikäinen [1] apply normal decomposition in

their approach. They explore various techniques of range

data normal estimation (comparing their performance and

accuracy on clean as well as noisy datasets). The techniques

include quadratic surface least squares [2] or LSQ planar

fitting [3]. A least-trimmed-squares method is utilized for

comparison. The normal estimation is done by detecting

roof and step edges. A similar approach is discussed in this

paper as well.

Another approach that uses a simple extraction of step

and roof edges in the depth map was introduced by Baccar

et al. [6]. Various approaches to fusion are presented such as

an averaging method, Dempster-Shafer combinations or the

Bernouilli’s rule. After combination rules are applied, an

edge gradient map is created which is further used as an

input to the watershed algorithm. This algorithm is applied

to cope with the noise in depth maps.

Ying Yang and Förstner [7] present a plane detection

method that makes use of the RANSAC algorithm. The map

is split to tiles (small rectangular blocks). Three points are

iteratively tested for a plane region in each block. Detected

planes within a certain range are merged at the end. We

present an adaptation of this technique for indoor depth map

segmentation in this paper.

Other work that compares plane segmentation approach-

es and that generally inspired our research is presented

in [8]. Among other findings, authors mention their experi-

ence showing that RANSAC tends to over-simplify com-

plex planar structures, for example multiple small steps

were often merged into one sloped plane.

Borrmann et al. [9] present an alternative approach to

plane detection in point clouds based on 3D Hough trans-

form. Dube and Zell [10] also employ randomized Hough

transform for real-time plane extraction. Non-associative

Markov networks are applied for the same task in [11]. A

use of another method – multidimensional particle swarm

optimization – is reported in [12].

Zheng and Zhang [13] extend the range of detected regu-

lar surfaces from planes to spheres and cylinders. Elseberg

et al. [14] show how an octree- and RANSAC based method

can efficiently deal with large 3D point clouds containing

billions of special data points. Sithole and Mapurisa [15]

speed up the processing by means of profiling techniques.

Deschaud and Goulette [16] deal with efficiency issues as

well.

Although our implementation is independent, we appre-

ciate availability of the Point Cloud Library (point-

clouds.org) developed by Willow Garage experts [17].

III. FAST DEPTH MAP SEGMENTATION

As mentioned above, we analysed several approaches to

depth image segmentation focusing on efficient strategies

enabling fast pre-processing that is potentially integrable

into further environment perception tasks.

A first set of explored algorithms comprises modifica-

tions of existing segmentation methods. To meet require-

ments limiting computing time and power in typical robotic

scenarios, we simplified the work of Baccar et al. [6]. This

resulted in algorithms combining depth and normal infor-

mation with morphological watershed segmentation.

Baccar et al. distinguish two approaches to depth image

edge extraction – one is based on step edges and the other

one on roof edges (depth- and normal edge extraction in our

terminology). We tested these approaches and evaluated

their performance and usability in environment perception

tasks.

A. Depth based edge extraction

The detection of step edges presents the fastest segmen-

tation method as it is simple to compute on depth images.

The original work implements the step edge detector using

local image approximation by smooth second order poly-

nomials and subsequent computation of first- or second-

order derivatives. The authors state that this approach is

fast. We experimented with it and decided to go even fur-

ther and use only ordinal arithmetic to speed up the process.

Because of large structural noise present in Kinect depth

images, it is still necessary to emulate the smoothing capa-

bility of second-order polynomials. This was done by taking

into account the neighbourhood and computing the value of

extracted edge according to the following formula:

 () ∑ {
 | () ()|
 () (1)

where t is the threshold depth difference specifying a step

edge, W is the window of neighbouring pixels and d is a

depth information at pixel x. This approach was chosen for

its maximum speed and simplicity. A gradient map, with

pixels representing steepness of edges, is generated as an

output.

B. Normal based edge extraction

Normal based edge detection, called extraction of roof

edges in the original paper, was taken as a part of hybrid

segmentation. In order to meet the computational speed

requirements, we simplified this method and implemented it

in a standalone module.

The edge extraction method is slightly more computa-

tionally expensive than the depth based segmentation, be-

cause the normal computation on noisy image must forerun.

Instead of the normal estimation from second order poly-

nomials, we applied the principle of accumulator edge ex-

traction again. Normal vectors are computed directly (using

depth difference or least-squares fitting) and only normal

differences are taken into account. Value of pixel of

edge gradient image is computed as:

 () ∑ {
 () ()

 () (2)

where n is a normal vector (normalized) adjacent to speci-

fied pixel of a depth image. This approach is simple but it

has proven reliable in the context of noisy data from Kinect.

C. Fusion based edge extraction

Having the outputs from depth-based and normal-based

segmentation methods, a late fusion can be applied to pro-

duce accurate and stable results.

Several fusion schemes were presented in [6]. They

ranged from simple averaging to sophisticated methods such

as the Super Bayesian Combination for fusing two pieces of

evidence or the Dempster’s rule of combination.

We opted for the fastest combination technique again.

Both the depth-based and normal-based edge extractors take

advantage of binary accumulators. Since our segmentation

algorithm is based on the watershed method (see below), a

simple sum of the two outputs provides a robust combina-

tion. A necessary condition is to use the same kernel size in

the input methods. The output is then given by a linear

combination:

 () () () (3)

where are appropriate weights. They are set to 1
to maintain ordinal computation in our experiments.

Table 1 summarizes all presented modifications.

D. Watershed segmentation

The linear combination used in the fusion-based edge

extraction (Section C) can significantly deform edge

strengths. For example, the strength of an edge detected by

both algorithms will be greater than the strength of an edge

detected by only one detector. This observation led us to the

use of watershed segmentation which provides robust means

to cope with such situations.

Applied modifications

Method Baccar et al. Hulik et al.

Depth-based

First- or second order

derivative computed

from second order

polynomials

Binary

accumulation

Normal-based
Normals computed

from second order

polynomials

Binary

accumulation

Fusion-based
Averaging, Super

Bayesian or Demp-

ster-Shafer

Weighted sum

Table 1. Summary of the original approach modifications

The concept of watershed segmentation can be explained

by the similarity of a gradient image and the Earth surface.

When it is iteratively flooded from regional minima and two

basins are about to merge, a “dam” separating the two wa-

tersheds is raised.

We adapted the segmentation technique by implement-

ing a simple minima-search algorithm. Knowing that the

input for segmentation is an edge-strength gradient image

(values represented by integers), we simply take each basin

as a union of connected points with values lesser than a

threshold.

This technique has proven to be reliable in the context of

integer-represented edge gradient images. The threshold can

be set close to zero as the edge extraction technique is gen-

erally insensitive to non-edge regions.

By applying the watershed segmentation to edge detec-

tors discussed above, we obtained three scene segmentation

methods, which were evaluated and compared:

1. depth-based segmentation (DS)

2. normal-based segmentation (NS)

3. segmentation by fusion of DS and NS (FS)

IV. NEW SEGMENTATION TECHNIQUES

In addition to the optimized methods proposed above,

we designed two novel approaches specifically tailored for

indoor scene segmentation. As mentioned in the Introduc-

tion, planar regions are typical for human-made indoor

environments. The new techniques make use of this fact by

focusing on plane detection in indoor scenes.

A. Plane prediction segmentation (PS)

A novel depth map segmentation method, inspired by

state-of-the-art approaches, is based on detecting local gra-

dients. The method benefits from an a priori assumption that

a majority of significant objects in the scene (objects to be

detected) are human-made. They are supposed to have pla-

nar faces or can be approximated by them. Two gradient

images are computed:

 () ∑ {
 | () ()|

 () (4)

 ()

 ∑

{

 (

| () ()|

 | () ()|
)

 (
| () ()|

 | () ()|
)

 () (5)

where represents a real depth of a specified pixel and is

a predicted theoretical depth of a pixel computed as follows:

 () () (() ()) () (6)

 defines a center point with specified gradient, () is a

theoretical depth of a point x predicted from point c using

its gradient, from formula 5 is the number of changes in

the process of detection in a current window. Changes are

defined as differences in thresholding in formula 4, e.g., if a

current pixel has been to 1, a precedent one to 0, the change

appeared. The value is used to identify a current region – a

large number of changes indicate a planar noisy area. This

value can be also used for statistical region merging.

The result is represented as an integer edge gradient im-

age, so it is easy to apply the described watershed segmenta-

tion method to obtain a desired region map.

B. Tiled RANSAC segmentation (RS)

In search for a very fast and reliable segmentation algo-

rithm for indoor depth scenes, we devised another solution

that uses RANSAC for the ground plane search. It came out

from the approach presented in [7]. We adapted the method

by turning a planar detection algorithm into a depth map

planar region segmentation procedure. The resulting algo-

rithm excels in the segmentation of indoor scene images in

which planar objects dominate.

To cope with the large computational cost of the RANSAC

search, we had to develop a specific algorithm for the plane

search which takes into account only small areas of the

scene. A depth image is covered by squared tiles which

define only a small search area for RANSAC, but sufficient-

ly large area for robust plane estimation from noisy images.

The algorithm is sketched in Figure 2.

Figure 2. Tiled RANSAC (RS) algorithm

In step 2.1, RANSAC is used to find an existing plane in

a current tile. This means a random search for plane candi-

dates from pixels that has not been segmented yet. A plane

is found if it has all three defining point connected, i.e.,

there are pixels on the triangle plane between all three trian-

gle vertices.

If a plane was found, a seed-fill algorithm will group all

connected plane points in the current tile (2.2.1). Seed fill-

ing is fast and it is executed only on a detected plane. Each

pixel is then seeded only once.

The last step (2.2.2) fills the rest of the depth map for

regions reaching borders. This spreads the region out of the

tile and prevents creation of artefacts that could result from

the tile search. If a large plane is found, this step also reduc-

es the number of tiles searched in further iterations of 2.1 by

pre-filling regions. The ability to fill regions outside the tile

borders ensures that identified planes are marked in the

whole depth image.

Because of its small random sample search, the tiled

RANSAC is often used in real-time systems. The algorithm

can reach speed of multiple frames per second.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate proposed methods, we designed a

series of tests focusing on performance and accuracy. Each

frame of the dataset was manually annotated to represent an

ideal segmentation result (the ground truth). Figure 3 shows

an example of such annotation. We used 20 different manu-

ally annotated frames for the accuracy comparison and 20

30-second frame sequences to evaluate the computation

efficiency.

The output of all five methods was collected. The seg-

mentation was compared to the ground truth data and the

percentage of correctly/wrongly segmented pixels was

counted. Additionally, we provide a comparison with PCL’s

[17] RANSAC point cloud segmentation method. Due to the

parallelism in PCL’s method, we used OpenMP [18] library

to parallelise our solution as well. An average computation-

al time of the segmentation process run on 640x480-pixel

images was also measured (Intel Core i7-2620M, 2.70

GHz). Results are summarized in Table 2. The graph in

Figure 4 characterizes the performance of the methods rela-

tively to the results of the slowest/most accurate method.

As expected, the FS and RS algorithms provide the most

accurate segmentation. The FS algorithm was designed to

precisely detect roof and step edges and the watershed seg-

mentation method contributes to its robustness. The key

disadvantage is the high computation time, the second larg-

est among the proposed approaches. It is due to computation

of normals for the whole depth map. The computation must

be robust so that a large neighbourhood needs to be taken

into account (window size 7x7 – 11x11 pixels, larger neigh-

bourhoods would result in imprecise segmentation on ob-

ject’s boundaries as normals would be deformed by the

difference in depth).

Figure 3. Sample images from manually

annotated dataset

The tile RANSAC search (RS) has proven to be a pre-

cise segmentation method too. The machine comparison

results are almost the same as that of the FS method. More-

over, a visual comparison of the segmented images reveals

that the method eliminated a problem related to the border

noise. On the other hand, it gets into difficulties with planes

1. Compute normals
2. For each tile

2.1. Try to find an existing triangle
using RANSAC

2.2. If found plane
2.2.1. Seed-fill the whole tile

2.2.2. Seed-fill

consisting of a small number of inlier points – the normals

are not computed precisely. Resulting region images need to

be post-processed using a region merging metric which join

similar planes together. The computation time is also a

strong attribute of this method.

The PS method provides the same accuracy as the NS.

However, its results are far more acceptable than that of the

NS method when one compares the segmentations visually

(see Figure 4). It is due to the precise detection of planar

regions and the sensitivity to small details. Both methods

suffer from the same problem – if the difference between a

suggested plane and a real pixel is below a threshold, no line

is detected. This poses problems on rounded edges which

are detected as a local noise.

Also note that the performance of the PS and RS meth-

ods cannot be simply compared with other segmentation

algorithms, because of the a priori assumption on the scene

shape. The algorithms are expected to produce a noisy out-

put for outdoor scenes.

Figure 4. Time and accuracy relative to results of

the tested algorithms

It is clear that the DS algorithm is far more efficient in

speed than the others. It employs minimal floating point

arithmetic and minimal image computations. On the other

hand, it is also the least precise. This comes from its nature

– it does not detect roof shaped edges. Despite that, the

method is a good candidate for general pre-processing. It

precisely detects depth differences so that clear boundaries

of different objects can be easily identified. Accuracy prob-

lems arise when the method is used to distinguish large

continuous objects such as wall corners.

Comparing our methods with the PCL’s RANSAC ap-

proach, it is clear that we successfully speeded up the seg-

mentation process while retaining necessary precision. The

lower precision in PCL method is due to the global search

of compared algorithm. The local approach in our methods

has better results for depth image segmentation.

The graph in Figure 4 also clearly shows that the time

consumption of the PS method is minimal when compared

to its relatively high accuracy. Thus, the technique is also a

good candidate for inclusion in very fast depth image pre-

processors.

Figure 5 shows a visual output of all the methods on two

test samples. To better demonstrate the results, regions are

not post-processed by the hole-filling algorithm.

VI. CONCLUSIONS

Five different depth-map segmentation methods were

described and evaluated in this paper. We modified three

well-known segmentation techniques to minimize their time

constraints. Additionally, two new algorithms – the plane

prediction segmentation and the tile RANSAC search were

presented. They take advantage of the assumption on plane

dominance in indoor scenes.

Evaluations were run to assess the performance of the

implemented methods. Speed and accuracy figures were

compared on a dataset consisting of manually segmented

indoor scene images. A visual comparison of the resulting

segmentations was also performed. Although the machine-

computed accuracy of the methods is similar, the visual

comparison shows large differences. There are also signifi-

cant differences in speed.

The usability of the segmentation methods based on

plane detectors depends on the nature of the segmentation

task – these methods are precise in planar objects segmenta-

tions, non-planar ones can pose problems. It is recommend-

ed to post-process segmented images by region merging and

hole filling algorithms, which can significantly increase the

usability in practical applications.

In future, we are planning to further parallelise and op-

timise proposed methods to reach the real-time performance

(<33.3 s/frame). GPU implementations are not supposed

now because of use of these methods primarily on small,

embedded systems. Also, further analysis and comparison

with today’s segmentation methods is advised.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

DS NS CS PS RS PCL
Time (relative)

Accuracy (relative)

Method DS NS FS PS RS PCL

Correctly segmented (%) 73.11±20.39 83.41±16.63 87.35±10.86 83.40±10.32 86.21±10.62 78.67±12.95

Wrongly segmented (%) 23.49±18.29 13.04±11.49 10.22±8.96 15.44±9.41 11.71±8.25 19.02±9.16

Time (ms) 28.49±8.19
134.00±27.3

8
151.85±34.72 138.20±41.37 97.89±13.63

254.12±194.3

1

Table 2. Table comparing the accuracy and speed of implemented segmentation methods.

ACKNOWLEDGMENTS

The research leading to these results has received fund-

ing from the European Union, 7th Framework Programme,

grant 247772 – SRS, Artemis JU grant 100233 – R3-COP,

and the IT4Innovations Centre of Excellence, grant

n. CZ.1.05/1.1.00/02.0070, supported by Operational Pro-

gramme “Research and Development for Innovations”

funded by Structural Funds of the European Union and the

state budget of the Czech Republic.

REFERENCES

[1] Pulli, K., Pietikäinen, M.: Range Image Segmentation Based on
Decomposition of Surface Normals. University of Oulu, Finland,
1988.

[2] Besl P., Surfaces in Range Image Understanding, Springer-Verlag.
New York, 1988.

[3] Taylor, R., Savini, M., Reeves A.: Fast Segmentation of Range
Imagery into Planar Regions. Computer Vision, Graphics, and Image
Processing, vol. 45, pp. 42-60, 1989.

[4] Rousseeuw, P., Leroy, A.: Robust Regression & Outlier Detection.
John Wiley & Sons, 1987.

[5] Poppinga, J.; Vaskevicius, N.; Birk, A.; Pathak, K.: Fast plane
detection and polygonalization in noisy 3D range images. Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on , vol., no., pp.3378-3383, 22-26 Sept. 2008.

[6] Baccar M., Gee, L. A., Gonzalez, R. C. and Abidi, M. A.:
Segmentation of Range Images Via Data Fusion and Morphological
Watersheds. Pattern Recognition, Vol. 29, No. 10. (October 1996),
pp. 1673-1687.

[7] Ying Yang, M., Förstner, W.: Plane Detection in Point Cloud Data.
Proceedings of the 2nd International Conference on Machine Control
Guidance Bonn (2010), Issue: 1, Pages: 95-104.

[8] Oßwald, S., Gutmann, J.-S., Hornung, A., Bennewitz, M.: From 3D
point clouds to climbing stairs: A comparison of plane segmentation
approaches for humanoids. In: Proceeding of the 11th IEEE-RAS
International Conference on Humanoid Robots (Humanoids 2011),
Bled, Slovenia, October 26-28, 2011

[9] Borrmann, D., Elseberg, J., Lingemann, and K., Nüchter, A.: The 3D
Hough transform for plane detection in point clouds – A review and a
new accumulator design. 3D research, Springer, Volume 2,
Number 2, March 2011.

[10] Dube, D. and Zell, A.: Real-time plane extraction from depth images
with the Randomized Hough Transform. In IEEE ICCV Workshop on
Challenges and Opportunities in Robot Perception, pages 1084 -
1091, Barcelona, Spain, November 2011.

[11] Shapovalov, R. and Velizhev, A.: Cutting-Plane Training of Non-
associative Markov Network for 3D Point Cloud Segmentation. In
Proceedings of the 2011 International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmission
(3DIMPVT’11). IEEE Computer Society, Washington, DC, USA,
2011, pp. 1-8.

[12] Wang, L., Cao, J. and Han, C.: Multidimensional particle swarm
optimization-based unsupervised planar segmentation algorithm of
unorganized point clouds. Pattern Recogn. 45, 11, November 2012.
pp. 4034-4043.

[13] Zheng, P. and Zhang, A.: A Method of Regular Objects Recognition
from 3D Laser Point Cloud. Lecture Notes in Electrical
Engineering, 1, Volume 126, Recent Advances in Computer Science
and Information Engineering, 2012. Pages 501-506.

[14] Elseberg, J., Borrmann, D., and Nüchter, A.: Efficient Processing of
Large 3D Point Clouds. In Proceedings of the XXIII International
Symposium on Information, Communication and Automation
Technologies (ICAT '11), IEEE Xplore, ISBN 978-1-4577-0746-9,
Sarajevo, Bosnia, October 2011.

[15] Sithole, G. and Mapurisa, W.T.: 3D Object Segmentation of Point
Clouds using Profiling Techniques. South African Journal of
Geomatics, Vol. 1, No. 1, January 2012.

[16] Deschaud, J. E., Goulette, F.: A fast and accurate plane detection
algorithm for large noisy point clouds using filtered normals and
voxel growing. In: Proceedings of the 5th International Symposium
on 3D Data Processing, Visualization and Transmission (3DPVT'10),
2010.

[17] Rusu, R.B. and Cousins, B.:3D is here: Point Cloud Library (PCL).
In: Proceedings of the International Conference on Robotics and
Automation, 2011, Shanghai, China.

[18] Menon R., Dagum L.: OpenMP: an industry standard API for shared-
memory programming. In: IEEE Computational Science and
Engineering, Vol. 5, No. 1. (1998), pp. 46-55.

Figure 5. Output visualization: upper-left: manual, middle-left: DS, bottom-left: NS,

upper-right: CS, middle-right: PS, bottom-right: RS

