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Abstract — This paper deals with a scene pre-processing task – 

depth image segmentation. Efficiency and accuracy of several 

methods for depth map segmentation are explored. To meet 

real-time capable constraints, state-of-the-art techniques 

needed to be modified. Along with these modifications, new 

segmentation approaches are presented which aim at 

optimizing performance characteristics. They benefit from an 

assumption of human-made indoor environments by focusing 

on detection of planar regions. All methods were evaluated on 

datasets with manually annotated real environments. A 

comparison with alternative solutions is also presented. 

Kinect; depth map segmentation; plane detection; computer 

vision; range sensing 

I.  INTRODUCTION 

Image segmentation is a well-studied computer vision 

task. Although depth map segmentation has common roots 

with greyscale image segmentation, respective algorithms 

generally differ. It is due to the presence of an additional 

dimension – the depth. The depth information (and consecu-

tive normal estimation from depth images) is beneficial as 

regions can be distinguished by a step in the depth or the 

direction of normal vectors. Consequently, segmentation 

algorithms are based primarily on depth- and normal com-

parison methods. 

Existing approaches differ in their accuracy and speed. 

To guarantee real-time performance, applications in robotics 

search for a precise segmentation that makes use of simplest 

possible methods. The simplification can come from an 

additional constraint on the environment in which a robot 

operates. For example, human-made objects (artefacts) can 

be mainly expected in indoor scenes. The a priori 

knowledge of their common shapes characterized by planar 

regions can lead to special segmentation approaches – plane 

detection (prediction). 

The research reported in this paper focuses on plane de-

tection in indoor-scene depth maps. The task is taken as a 

pre-processing step for further planar object detection (floor, 

walls, table-tops, etc.) or rough segmentation of foreground 

and background objects. Although widely-used devices for 

capturing scene depth data (such as Kinect, PrimeSense, or 

XtionPRO) provide also visual RGB data, we focus solely 

on the depth data in this paper. The methods are then easily 

adaptable to data from other sensors such as LIDARs. 

Today, there is a large number of depth segmentation al-

gorithms usable in robotics. However, only few of them 

meet strict low computational power consumption con-

straints. We studied and compared existing methods and 

designed and implemented various modifications to reach 

real-time capable performance while retaining the accuracy.  

Common low-cost depth sensors suffer from specific 

problems linked to such type of sensors. The major persist-

ing problem is a structural noise present in the depth data. 

All reported methods are therefore optimized to depress this 

kind of problem. A general intention is to wider applicabil-

ity of cheap range sensors in the field of precise and fast 

environment perception. 

     
 

Figure 1. Indoor kinect depth map example 



The rest of this paper is organized as follows: The next 

section discusses previous work related to our research. 

Section III takes on existing methods for depth map seg-

mentation and proposes their optimization with the aim to 

achieve fast performance while keeping their stability and 

precision. Section IV presents novel approaches for segmen-

tation of depth maps focused on planar regions typical for 

indoor scenes. Experimental results and a comparison of 

existing and new methods are discussed in Section V. 

II. RELATED WORK 

Last years brought a boom of cheap depth sensors used 

for localization, map building, environment reconstruction, 

object detection, and other tasks in robotics. A rapid devel-

opment of various methods for depth map processing fol-

lowed. Fast object detection usually incorporates pre-

processing of depth data.  

Pulli and Pietikäinen [1] apply normal decomposition in 

their approach. They explore various techniques of range 

data normal estimation (comparing their performance and 

accuracy on clean as well as noisy datasets). The techniques 

include quadratic surface least squares [2] or LSQ planar 

fitting [3]. A least-trimmed-squares method is utilized for 

comparison. The normal estimation is done by detecting 

roof and step edges. A similar approach is discussed in this 

paper as well. 

Another approach that uses a simple extraction of step 

and roof edges in the depth map was introduced by Baccar 

et al. [6]. Various approaches to fusion are presented such as 

an averaging method, Dempster-Shafer combinations or the 

Bernouilli’s rule. After combination rules are applied, an 

edge gradient map is created which is further used as an 

input to the watershed algorithm. This algorithm is applied 

to cope with the noise in depth maps.  

Ying Yang and Förstner [7] present a plane detection 

method that makes use of the RANSAC algorithm. The map 

is split to tiles (small rectangular blocks). Three points are 

iteratively tested for a plane region in each block. Detected 

planes within a certain range are merged at the end. We 

present an adaptation of this technique for indoor depth map 

segmentation in this paper. 

Other work that compares plane segmentation approach-

es and that generally inspired our research is presented 

in [8]. Among other findings, authors mention their experi-

ence showing that RANSAC tends to over-simplify com-

plex planar structures, for example multiple small steps 

were often merged into one sloped plane. 

Borrmann et al. [9] present an alternative approach to 

plane detection in point clouds based on 3D Hough trans-

form. Dube and Zell [10] also employ randomized Hough 

transform for real-time plane extraction. Non-associative 

Markov networks are applied for the same task in [11]. A 

use of another method – multidimensional particle swarm 

optimization – is reported in [12].  

Zheng and Zhang [13] extend the range of detected regu-

lar surfaces from planes to spheres and cylinders. Elseberg 

et al. [14] show how an octree- and RANSAC based method 

can efficiently deal with large 3D point clouds containing 

billions of special data points. Sithole and Mapurisa [15] 

speed up the processing by means of profiling techniques. 

Deschaud and Goulette [16] deal with efficiency issues as 

well. 

Although our implementation is independent, we appre-

ciate availability of the Point Cloud Library (point-

clouds.org) developed by Willow Garage experts [17]. 

III. FAST DEPTH MAP SEGMENTATION 

As mentioned above, we analysed several approaches to 

depth image segmentation focusing on efficient strategies 

enabling fast pre-processing that is potentially integrable 

into further environment perception tasks.  

A first set of explored algorithms comprises modifica-

tions of existing segmentation methods. To meet require-

ments limiting computing time and power in typical robotic 

scenarios, we simplified the work of Baccar et al. [6]. This 

resulted in algorithms combining depth and normal infor-

mation with morphological watershed segmentation. 

Baccar et al. distinguish two approaches to depth image 

edge extraction – one is based on step edges and the other 

one on roof edges (depth- and normal edge extraction in our 

terminology). We tested these approaches and evaluated 

their performance and usability in environment perception 

tasks. 

A. Depth based edge extraction 

The detection of step edges presents the fastest segmen-

tation method as it is simple to compute on depth images. 

The original work implements the step edge detector using 

local image approximation by smooth second order poly-

nomials and subsequent computation of first- or second-

order derivatives. The authors state that this approach is 

fast. We experimented with it and decided to go even fur-

ther and use only ordinal arithmetic to speed up the process.  

Because of large structural noise present in Kinect depth 

images, it is still necessary to emulate the smoothing capa-

bility of second-order polynomials. This was done by taking 

into account the neighbourhood and computing the value of 

extracted edge according to the following formula: 

  ( )  ∑ {
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where t is the threshold depth difference specifying a step 

edge, W is the window of neighbouring pixels and d is a 

depth information at pixel x. This approach was chosen for 

its maximum speed and simplicity. A gradient map, with 

pixels representing steepness of edges, is generated as an 

output. 

B. Normal based edge extraction 

Normal based edge detection, called extraction of roof 

edges in the original paper, was taken as a part of hybrid 

segmentation. In order to meet the computational speed 

requirements, we simplified this method and implemented it 

in a standalone module.  

The edge extraction method is slightly more computa-

tionally expensive than the depth based segmentation, be-

cause the normal computation on noisy image must forerun. 

Instead of the normal estimation from second order poly-



nomials, we applied the principle of accumulator edge ex-

traction again. Normal vectors are computed directly (using 

depth difference or least-squares fitting) and only normal 

differences are taken into account. Value of     pixel of 

edge gradient image is computed as: 

  ( )  ∑ {
     ( )   ( )   

                                     ( )     (2) 

where n is a normal vector (normalized) adjacent to speci-

fied pixel of a depth image. This approach is simple but it 

has proven reliable in the context of noisy data from Kinect.  

C. Fusion based edge extraction 

Having the outputs from depth-based and normal-based 

segmentation methods, a late fusion can be applied to pro-

duce accurate and stable results. 

Several fusion schemes were presented in [6]. They 

ranged from simple averaging to sophisticated methods such 

as the Super Bayesian Combination for fusing two pieces of 

evidence or the Dempster’s rule of combination. 

We opted for the fastest combination technique again. 

Both the depth-based and normal-based edge extractors take 

advantage of binary accumulators. Since our segmentation 

algorithm is based on the watershed method (see below), a 

simple sum of the two outputs provides a robust combina-

tion. A necessary condition is to use the same kernel size in 

the input methods. The output is then given by a linear 

combination: 

 ( )      ( )      ( )   (3) 

where           are appropriate weights. They are set to 1 
to maintain ordinal computation in our experiments. 

Table 1 summarizes all presented modifications. 

D. Watershed segmentation 

The linear combination used in the fusion-based edge 

extraction (Section C) can significantly deform edge 

strengths. For example, the strength of an edge detected by 

both algorithms will be greater than the strength of an edge 

detected by only one detector. This observation led us to the 

use of watershed segmentation which provides robust means 

to cope with such situations. 

 

Applied modifications 

Method Baccar et al. Hulik et al. 

Depth-based 

First- or second order 

derivative computed 

from second order 

polynomials 

Binary 

accumulation 

Normal-based 
Normals computed 

from second order 

polynomials 

Binary 

accumulation 

Fusion-based 
Averaging, Super 

Bayesian or Demp-

ster-Shafer  

Weighted sum 

Table 1. Summary of the original approach modifications 

 

 

The concept of watershed segmentation can be explained 

by the similarity of a gradient image and the Earth surface. 

When it is iteratively flooded from regional minima and two 

basins are about to merge, a “dam” separating the two wa-

tersheds is raised. 

We adapted the segmentation technique by implement-

ing a simple minima-search algorithm. Knowing that the 

input for segmentation is an edge-strength gradient image 

(values represented by integers), we simply take each basin 

as a union of connected points with values lesser than a 

threshold.  

This technique has proven to be reliable in the context of 

integer-represented edge gradient images. The threshold can 

be set close to zero as the edge extraction technique is gen-

erally insensitive to non-edge regions. 

By applying the watershed segmentation to edge detec-

tors discussed above, we obtained three scene segmentation 

methods, which were evaluated and compared: 

 

1. depth-based segmentation (DS) 

2. normal-based segmentation (NS) 

3. segmentation by fusion of DS and NS (FS)  

IV. NEW SEGMENTATION TECHNIQUES 

In addition to the optimized methods proposed above, 

we designed two novel approaches specifically tailored for 

indoor scene segmentation. As mentioned in the Introduc-

tion, planar regions are typical for human-made indoor 

environments. The new techniques make use of this fact by 

focusing on plane detection in indoor scenes. 

A. Plane prediction segmentation (PS) 

A novel depth map segmentation method, inspired by 

state-of-the-art approaches, is based on detecting local gra-

dients. The method benefits from an a priori assumption that 

a majority of significant objects in the scene (objects to be 

detected) are human-made. They are supposed to have pla-

nar faces or can be approximated by them. Two gradient 

images are computed: 

  ( )  ∑ {
       | (   )   ( )|   

                             
   ( )  (4) 

 

 

  ( )   

 ∑

{
 
 

 
         (

|  (   )   ( )|        

     | (     )   (   )|   
)    

     (
|  (   )   ( )|        

      |  (     )   (   )|   
)

                                                            

   ( )       (5) 

where   represents a real depth of a specified pixel and   is 

a predicted theoretical depth of a pixel computed as follows: 

 (   )    ( )  ( ( )   ( ))   ( )  (6) 

  defines a center point with specified gradient,  (   ) is a 

theoretical depth of a point x predicted from point c using 

its gradient,    from formula 5 is the number of changes in 



the process of detection in a current window. Changes are 

defined as differences in thresholding in formula 4, e.g., if a 

current pixel has been to 1, a precedent one to 0, the change 

appeared. The value is used to identify a current region – a 

large number of changes indicate a planar noisy area. This 

value can be also used for statistical region merging. 

The result is represented as an integer edge gradient im-

age, so it is easy to apply the described watershed segmenta-

tion method to obtain a desired region map. 

B. Tiled RANSAC segmentation (RS) 

In search for a very fast and reliable segmentation algo-

rithm for indoor depth scenes, we devised another solution 

that uses RANSAC for the ground plane search. It came out 

from the approach presented in [7]. We adapted the method 

by turning a planar detection algorithm into a depth map 

planar region segmentation procedure. The resulting algo-

rithm excels in the segmentation of indoor scene images in 

which planar objects dominate. 

To cope with the large computational cost of the RANSAC 

search, we had to develop a specific algorithm for the plane 

search which takes into account only small areas of the 

scene. A depth image is covered by squared tiles which 

define only a small search area for RANSAC, but sufficient-

ly large area for robust plane estimation from noisy images. 

The algorithm is sketched in Figure 2. 

 

 
 

Figure 2. Tiled RANSAC (RS) algorithm 

 

In step 2.1, RANSAC is used to find an existing plane in 

a current tile. This means a random search for plane candi-

dates from pixels that has not been segmented yet. A plane 

is found if it has all three defining point connected, i.e., 

there are pixels on the triangle plane between all three trian-

gle vertices. 

If a plane was found, a seed-fill algorithm will group all 

connected plane points in the current tile (2.2.1). Seed fill-

ing is fast and it is executed only on a detected plane. Each 

pixel is then seeded only once. 

The last step (2.2.2) fills the rest of the depth map for 

regions reaching borders. This spreads the region out of the 

tile and prevents creation of artefacts that could result from 

the tile search. If a large plane is found, this step also reduc-

es the number of tiles searched in further iterations of 2.1 by 

pre-filling regions. The ability to fill regions outside the tile 

borders ensures that identified planes are marked in the 

whole depth image. 

Because of its small random sample search, the tiled 

RANSAC is often used in real-time systems. The algorithm 

can reach speed of multiple frames per second. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to evaluate proposed methods, we designed a 

series of tests focusing on performance and accuracy. Each 

frame of the dataset was manually annotated to represent an 

ideal segmentation result (the ground truth). Figure 3 shows 

an example of such annotation. We used 20 different manu-

ally annotated frames for the accuracy comparison and 20 

30-second frame sequences to evaluate the computation 

efficiency. 

The output of all five methods was collected. The seg-

mentation was compared to the ground truth data and the 

percentage of correctly/wrongly segmented pixels was 

counted. Additionally, we provide a comparison with PCL’s 

[17] RANSAC point cloud segmentation method. Due to the 

parallelism in PCL’s method, we used OpenMP [18] library 

to parallelise our solution as well. An average computation-

al time of the segmentation process run on 640x480-pixel 

images was also measured (Intel Core i7-2620M, 2.70 

GHz). Results are summarized in Table 2. The graph in 

Figure 4 characterizes the performance of the methods rela-

tively to the results of the slowest/most accurate method. 

As expected, the FS and RS algorithms provide the most 

accurate segmentation. The FS algorithm was designed to 

precisely detect roof and step edges and the watershed seg-

mentation method contributes to its robustness. The key 

disadvantage is the high computation time, the second larg-

est among the proposed approaches. It is due to computation  

of normals for the whole depth map. The computation must 

be robust so that a large neighbourhood needs to be taken 

into account (window size 7x7 – 11x11 pixels, larger neigh-

bourhoods would result in imprecise segmentation on ob-

ject’s boundaries as normals would be deformed by the 

difference in depth). 

 

  
 

  
Figure 3. Sample images from manually 

annotated dataset 

The tile RANSAC search (RS) has proven to be a pre-

cise segmentation method too. The machine comparison 

results are almost the same as that of the FS method. More-

over, a visual comparison of the segmented images reveals 

that the method eliminated a problem related to the border 

noise. On the other hand, it gets into difficulties with planes 

1. Compute normals 
2. For each tile 

2.1. Try to find an existing triangle 
using RANSAC 

2.2. If found plane 
2.2.1. Seed-fill the whole tile 

2.2.2. Seed-fill 



consisting of a small number of inlier points – the normals 

are not computed precisely. Resulting region images need to 

be post-processed using a region merging metric which join 

similar planes together. The computation time is also a 

strong attribute of this method.  

The PS method provides the same accuracy as the NS. 

However, its results are far more acceptable than that of the 

NS method when one compares the segmentations visually 

(see Figure 4). It is due to the precise detection of planar 

regions and the sensitivity to small details. Both methods 

suffer from the same problem – if the difference between a 

suggested plane and a real pixel is below a threshold, no line 

is detected. This poses problems on rounded edges which 

are detected as a local noise. 

Also note that the performance of the PS and RS meth-

ods cannot be simply compared with other segmentation 

algorithms, because of the a priori assumption on the scene 

shape. The algorithms are expected to produce a noisy out-

put for outdoor scenes. 

 

Figure 4. Time and accuracy relative to results of 

the tested algorithms 

It is clear that the DS algorithm is far more efficient in 

speed than the others. It employs minimal floating point 

arithmetic and minimal image computations. On the other 

hand, it is also the least precise. This comes from its nature 

– it does not detect roof shaped edges. Despite that, the 

method is a good candidate for general pre-processing. It 

precisely detects depth differences so that clear boundaries 

of different objects can be easily identified. Accuracy prob-

lems arise when the method is used to distinguish large 

continuous objects such as wall corners.  

Comparing our methods with the PCL’s RANSAC ap-

proach, it is clear that we successfully speeded up the seg-

mentation process while retaining necessary precision. The 

lower precision in PCL method is due to the global search 

of compared algorithm. The local approach in our methods 

has better results for depth image segmentation. 

The graph in Figure 4 also clearly shows that the time 

consumption of the PS method is minimal when compared 

to its relatively high accuracy. Thus, the technique is also a 

good candidate for inclusion in very fast depth image pre-

processors. 

Figure 5 shows a visual output of all the methods on two 

test samples. To better demonstrate the results, regions are 

not post-processed by the hole-filling algorithm. 

VI. CONCLUSIONS 

Five different depth-map segmentation methods were 

described and evaluated in this paper. We modified three 

well-known segmentation techniques to minimize their time 

constraints. Additionally, two new algorithms – the plane 

prediction segmentation and the tile RANSAC search were 

presented. They take advantage of the assumption on plane 

dominance in indoor scenes. 

Evaluations were run to assess the performance of the 

implemented methods. Speed and accuracy figures were 

compared on a dataset consisting of manually segmented 

indoor scene images. A visual comparison of the resulting 

segmentations was also performed. Although the machine-

computed accuracy of the methods is similar, the visual 

comparison shows large differences. There are also signifi-

cant differences in speed.  

The usability of the segmentation methods based on 

plane detectors depends on the nature of the segmentation 

task – these methods are precise in planar objects segmenta-

tions, non-planar ones can pose problems. It is recommend-

ed to post-process segmented images by region merging and 

hole filling algorithms, which can significantly increase the 

usability in practical applications. 

In future, we are planning to further parallelise and op-

timise proposed methods to reach the real-time performance 

(<33.3 s/frame). GPU implementations are not supposed 

now because of use of these methods primarily on small, 

embedded systems. Also, further analysis and comparison 

with today’s segmentation methods is advised. 
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Time (relative)

Accuracy (relative)

     

Method DS NS FS PS RS PCL 

Correctly segmented (%) 73.11±20.39 83.41±16.63 87.35±10.86 83.40±10.32 86.21±10.62 78.67±12.95 

Wrongly segmented (%) 23.49±18.29 13.04±11.49 10.22±8.96 15.44±9.41 11.71±8.25 19.02±9.16 

Time (ms) 28.49±8.19 
134.00±27.3

8 
151.85±34.72 138.20±41.37 97.89±13.63 

254.12±194.3

1 

 

Table 2. Table comparing the accuracy and speed of implemented segmentation methods. 
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Figure 5. Output visualization: upper-left: manual, middle-left: DS, bottom-left: NS,  

upper-right: CS, middle-right: PS, bottom-right: RS 

   


