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Abstract

Computer vision algorithms typically process real world
image data acquired by cameras or video cameras. Such
image data suffer from imperfections caused by the acqui-
sition process. This paper focuses on simulation of the
acquisition process in order to enable rendering of images
based on a 3D generated model that are as close to the
images acquired by cameras or video cameras as possi-
ble. Its main purpose is simulation of video input for com-
puter vision applications, e.g. robot navigation. Imperfec-
tions, such as geometry distortion, chromatic aberration,
depth of field effect, motion blur, exposure automation,
vignetting, inner lens reflections, and also imperfections
caused by image sensor features are considered.

The paper, besides description of imperfections of the
acquisition process and description of imperfections si-
mulation, also presents results of the simulation software
through illustrative figures produced by the software.

Keywords: Camera Imperfections Simulation, Depth of
Field Effect, Distortion, Motion Blur, Vignetting, Lens
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1 Introduction

Computer vision is a field of computer graphics that al-
lows for acquiring, analyzing, and understanding images.
An input of computer vision algorithm is a set of images,
which are typically captured by camera or video camera.
An output is a symbolic information, e.g. information
about identity of subject in the image or any other valu-
able information. Input images are not perfect copies of
the reality since they are affected by many camera features.
A ”perfect” image of the real world is modified and cam-
era features add imperfections to the image. The imper-
fections strongly influence success of the algorithms, so
in general, the algorithms need to take into account these
imperfections.

Implementations of computer vision algorithms in real
world application work with images or sequences of im-
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ages, which are usually captured by a camera. Such can
be e.g. a security camera or a robot camera. Also, the
implementations have to be trained and tested on a set of
images. The more similar the test images and the images
captured in the real world application are, the more precise
the results of algorithms are.

The best way to acquire similar data is to use a camera,
which would be used in the real world application. How-
ever, this option is often either expensive or unavailable.
The second option is to use a dataset of images, which was
acquired by a different camera or cameras. The images
would be affected by different camera imperfections, so
the result would be worse. The third option is to generate
data by computer and use it as input images. The gene-
rated images and dataset of images are generally cheaper,
but the results of such solution would be worse as well.

A good way how to get better results is to modify com-
puter generated ”perfect” images to look similar to the im-
ages created by a target device. This paper describes a si-
mulation method for acquiring target device like images.

2 Related work

No complex simulator with all the desired features was
known up to the date, but there are relatively many pub-
lications that describe the camera features and simulation
methods for some of the features [4, 5, 8, 10].

Distortion is a general problem of lenses. Measurement
and correction of the distortion are described in [12]. Si-
mulation of distortion is just a reversed process. Detection
and elimination of a chromatic abberation (a form of dis-
tortion) is shown in [5].

Depth of field effect problem is widely explored. Many
algorithms that simulate the effect are known. Basic de-
scription of these methods can be found in [3, 6, 10]. De-
tailed description of the interactive depth of field diffusion
method is described in [2]. This method is interesting be-
cause it does not suffer from some problems that appear in
the other post-processing methods.

Many camera sensors capture color images using a color
filter array. Description of this feature and its effect to the
output is described in [11]. Another problem of the sensors
is noise. Noise evaluation of CCD sensors is shown in [9].
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Characteristics of many cameras and sensors are described
by EMVA Standard 1288 [1].

3 Description of simulation

The proposed algorithm consists of application of several
effects, which simulate the described features. All the si-
mulated effects are described in the following sections and
every one can be adjusted by using parameters. Default or-
der of the effects application is shown in Figure 2. (In the
implemented software, the parameters of the effects and
their order are described with configuration file.) Input
of the simulator is a (high-dynamic range) color image, a
depth map, and an environment map. The color image is
a ”perfect” image that will be modified by the simulator.
The image is shown in Figure 1. The depth map defines
distance between a pixel in real world and a camera. This
map is used by the depth of field effect and the motion blur
effect.

Figure 1: Input color image; this image is modified by the
simulator

4 Lens features

This section describes lens features: distortion, chromatic
abberation, vignetting, and lens flares. The camera lens is
an optical system that affects more phenomena like spheri-
cal aberration, astigmatism, coma and more, but in general
their influence in the camera lens is not considered or it is
rarely considered. Therefore, we have not included these
phenomena.

4.1 Distortion

The camera image is a 2D-projection of the real world. In
optics, distortion is a deviation from rectlinear projection.
This projection guarantees straight lines remain straight
after the projection.

Figure 2: Algorithm of the simulation. The effect ’Blurs’
links up depth of field effect, motion blur, and structural
blur. The effect ’Sensor features’ links up noise and color
filter array.

The most commonly encountered distortion is radially
symmetric distortion. This type of distortion arises from
the symmetry of the camera lens and the symmetry of the
camera optical system. In this case, the distortion can be
simulated by the radial distortion model. The radial dis-
tortion model uses 6-7 real-valued variables which specify
the distortion. [12] contains a description of this model.

Radial distortion model can be expressed as:

rd = f (r), (1)

where: rd – destination distance of input pixel position
r – source distance
f – distortion function

If the distortion is not symmetric, it cannot be simulated
by the radial distortion model. In that case, warping is
used that as described in [7, 14].

The distortion simulation uses a 2D filter to remap the
input pixels to the output pixels. For better results, we use
the Lanczos filter in the current version.
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4.2 Chromatic abberation

Chromatic abberation is a type of distortion in which the
lens is not able to focus all colors to the same convergence
point. This distortion is caused by different refractive in-
dexes for different light wavelengths. The distortion is
mainly observed in the edges between a bright light and
a shadow.

The abberation can be simulated by modification of the
distortion model. Every color channel of the input image
is deformed by a slightly different distortion. The result
is a color contour in the edge of the bright and dark areas.
The abberation is radially symmetric. Therefore, it can be
implemented by radial distortion model and also by warp-
ing.

We simulate the abberation by:

r′color = fcolor(r), (2)

where: r′color – distance between the output pixel po-
sition and a center of the image

r – distance between the input pixel and
the center

fcolor(r) – central distortion model for color

4.3 Vignetting

Vignetting is a reduction of an image’s brightness at the
image periphery. The vignetting is mainly radially sym-
metrical, but rarely it can be also radially asymmetrical.
The simulation of this feature is straight-forward. Pixels
of the input image are multiplied by the pixels of a vi-
gnetting mask image. The vignetting mask is defined by
the used camera and can be obtained by measuring. It can
be measured in a scene where only one solid color occurs
(e.g. a white paper). In this case, an image brightness
is the vignetting mask. The example of the vignetting is
shown in Figure 3.

Vignetting is calculated as:

B(x,y) = m(x,y)S(x,y), (3)

where: B – output image
m – vignetting mask
S – input image

If it is centrally symetric vignetting, m is computed:

m(x,y) = m′
(

4
(x− sx/2)2 +(y− sy/2)2

sx2 + sy2

)
, (4)

where: (sx,sy) – image size
m – vignetting mask

4.4 Lens flare

Lens flare is an unwanted light in lens system caused by in-
homogeneities in the lens. The source of the lens flare are

Figure 3: Vignetting; the corners are darker than the center

unwanted internal reflections or scattered reflection inside
the lens. It is difficult to describe all phenomena and their
effects to the output image due to complex construction of
the lens. Every lens creates different artifacts. Even the
same type of the lens can create different artifacts under
different conditions. In addition, the different position of
the light source in the image can create different artifacts
as well.

Lens flare manifests itself as a haze across the image or
as visible artifacts. The haze can be simply simulated by
adding color to all pixels in the image. The visible artifacts
can be caused by a reflection on the aperture, inner reflec-
tions in the camera lens, refraction on inhomogeneities in
the lens etc. Bright light source can create a star or can be
mirrored etc.

A simple simulation of the lens flare artifacts is shown
in Figure 4. We simulate this effect in following way:

B = S∗K, (5)

where: B – output image
S – input image
∗ – convolution
K – convolution kernel

In Figure 4, a mirrored ghost is shown in the red circle.
The ghost is created by:

B(x,y) = S(x,y)+αxyS(sx− x,sy− y), (6)

where: B – output image
S – input image
αxy – intensity of the ghost
(sx,sy) – size of the image

5 Aperture features

This section describes the simulated aperture features that
affects the output image. It describes mechanisms of the
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Figure 4: Lens flare effect; a bright light causes lens flare,
the mirrored ghost of the light is shown in the circle

aperture adaptation and depth of field effects. This section
also describes structural blur. This imperfection is not an
aperture feature, but it can be simply simulated by a modi-
fied depth of field effect.

5.1 Aperture adaptation

Image brightness is influenced by three parameters in the
real world application: an exposure time, a film speed and
a f-number. The exposure time affects the motion blur.
The film speed affects the sensor noise. The f-number de-
scribes a radius of the aperture. Moreover, the f-number
affects the depth of field effect. With growing f-number,
the depth of field effect becomes more visible (we sup-
pose the f-number in form f/1.2, f/2, etc.). To calculate
the output pixel color, we use these parameters in the fol-
lowing equation:

yi j = xi j c
t s
b2 , (7)

where: yi j – output pixel color
xi j – input pixel color
c – constant
t – exposure time
s – ISO film speed
b – f-number

The aperture adaptation calculates the f-number to get
equal average grayscale value of image and middle gray.
Middle gray is the universal measurement standard in pho-
tographic cameras and it stands a tone that is about half
way between black and white. We compute an average
image brightness by:

yavg =
∑i ∑ j wi j xi j

∑i ∑ j wi j
, (8)

where: yavg – average color
x – input image
wi j – weight of the pixel

In general, pixels of our interest, e.g. in the center of the
image, have bigger weight than the other pixels.

We implement two ways of adaptations. First one is in
form:

bnew =
√

yavg, (9)

where: bnew – f-number
yavg – average color of the image

The second method works iteratively. The drawback
is, that the whole simulation has to be performed multi-
ple times to get a valid f-number. On the other hand, the
method usually converges to the true f-number. In addi-
tion, this method allows separate computation of average
color and adaptation. The average color can be computed
from the simulation input or the simulation output. This
method is performed via a PID controller. The controller
calculates an error value as the difference between the ave-
rage color and the middle gray and it adapts the f-number
to minimize the error. The formula is:

bn = bn−1 +K p
√

en +Ki
n−1

∑
j=0

√
e j, (10)

where: bn – n-th f-number in the iterative computation
K p – proportional gain
Ki – integral gain
en – difference between the middle gray and

the average color with f-number equal bn

5.2 Depth of field effect

Computer graphics methods for 3D scenes rendering typi-
cally use a pinhole camera model. The model leads to ren-
dering entire scene in perfect focus. An image in the real
world application is formed in an optical system where the
light from a point in the scene converges at only one depth
behind the lens. This depth is not necessarily equal to the
sensor depth (Figure 5). The point in the real world ap-
pears spread over a region in the image. The region is
called the circle of confusion (CoC). A computation of
the circle of confusion is described in [3]. Simulation
techniques of depth of field effect can be divided into ob-
ject space methods and image space methods. The ob-
ject space methods operate on a 3D scene representation.
In general, the object space methods create more realis-
tic results than image-space methods. The image-space
methods operate on a 2D image of the scene. The image-
space methods are postprocessing filters. The image is
blurred with the aid of a depth map.

The simulator processes only 2D images, thus we are
just interested in the image-space methods. We use two
methods. The first method is based on the 2D linear filter

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics



Figure 5: A point in the scene is projected as a disc on the
image sensor plane, leading to depth of field effects

and it is called ”Reverse-mapped Z-buffer depth of field”.
This method is shown in [6]. We use:

B(x,y) = ∑
i

∑
j

ps f (x,y, i, j)S(i, j), (11)

where: B – output image
S – input image
ps f – point spread function

The ps f function is a point spread function, which relies
on the circle of confusion computation.

The second implemented method is the depth of field
using simulated diffusion (Figure 6). This method is based
on principles of heat diffusion in an anisotropic environ-
ment. The algorithm is performed in two separate phases.
In first phase, the diffusion is performed for each separate
line. We create following equation for every pixel in the
line:

yi− xi = βi+1(yi+1− yi)+βi(yy−1− yi), (12)

βi = min(CoC2
i−1,CoC2

i ), (13)

where: CoCi – circle of confusion for i-th pixel
xi – i-th input pixel
yi – i-th output pixel

We get system of the equations that describes diffusion in
the line. Then, we compute diffusion for every line of the
image. In second phase, we compute diffusion for each
column in the same way. This method is described in [2].

5.3 Structural blur

A perfect lens is able to project a point in the real world to
an image point. A real world lens is not able to focus a real
world point into an image point; therefore, the image of the
point is blurred. We call this phenomenon the structural
blur. We simulate this feature by modification of the depth
of field effect computation. We just substitute circle of
confusion computation by a structural blur ratio. Output
of the structural blur is shown in Figure 7.

Figure 6: Depth of field effect; the camera is focused to
the roof

Figure 7: Structural blur effect; the corners are more
blurred than the center

6 Motion blur

In real world application, when a camera creates an image,
the scene captured by the camera is not always static.
Changes in the scene during the exposure are recorded to
the image. Moving objects are blurred along their relative
motion. This effect is called motion blur. Motion blur can
be also caused by a camera motion. In such case, moving
objects can be blurred and static objects must be blurred
(the blur occurs along the change of the camera’s view-
port). An example of motion blur is shown in Figure 8.
Motion blur is affected by the exposure time. Longer ex-
posure time causes bigger blur effect.

The simulator expects to get input images representing
of static scene with no motion blur even if the objects are in
motion. The simulator uses fullscreen motion blur based
on the algorithm in [13]. It allows us to simulate a camera
motion.
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Figure 8: Motion blur; the motion of the camera’s view is
simulated

We compute motion blur by a following equation per
every pixel:

out =
1
n

n−1

∑
i=0

S
(

xs + xr
i

n−1
,ys + yr

i
n−1

)
, (14)

xr = xd− xs, (15)

yr = yd− ys, (16)

where: out – output color pixel
n – number of steps
(xs,ys) – source coordinate of motion
(xd ,yd) – destination coordinate of motion
S – input image

7 Sensor features

An output image is influenced by a sensor and its features.
These features are noise, non-uniform response, and color
filter array with demosaic filter. There are more features
like blooming and artefacts caused by a transport in the
sensor. In the current version, we simulate noise and color
filter array with demosaic filter. Parameters of these fea-
tures are known for many cameras unlike the other fea-
tures.

7.1 Noise

Image noise is a random variation of brightness in images.
The noise fundamentally limits the distinguishable content
in the images. More information about CCD noise and
evaluation of CCD sensor noise can be found in [9]. Euro-
pean machine vision association has also published EMVA
Standard 1288[1] that describes the method of measure-
ment and description noise of sold sensors and cameras.
Simulated noise is shown in Figure 9.

In current version, we simulate noise the using:

B(x,y) = S(x,y)+ r( f (S(x,y))), (17)

Figure 9: Noise; temporal noise is added to the image

where: B – output image
S – input image
r(i) – random number generator (e.g. Gaussian

deistribution with a standard deviation i)
f – signal to noise ratio function

7.2 Color filter array

Most modern digital cameras acquire images using a sin-
gle sensor overlaid with a color filter array. Each pixel
on a camera sensor contains photo elements. The eleme-
nents are monochromatic light sensitive and they do not
distinguish wavelength of light. The output of the sensor
is monochromatic image. Therefore, a color filter array is
positioned on top of the sensor to filter out the component
of light by the wavelength. The very common filter is the
GRGB Bayer filter.

We simulate color filter array effect in two steps. We
create a color mosaic image:

Bcolor(x,y) = Scolor(x,y) ·Mcolor(x,y), (18)

where: B – color mosaic image
S – input image
M – mosaic mask

The result of the color mosaicing is demosaiced by the
following process:

Bcolor = Scolor ∗Kcolor, (19)

where: B – output image
S – input image
K – convolution kernel
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If we want to simulate GRGB Bayer filter array, we use:

Mred(x,y) =

{
1 if x and y is odd
0 otherwise (20)

Mgreen(x,y) =

{
1 if x+ y is odd
0 otherwise (21)

Mblue(x,y) =

{
1 if x and y is even
0 otherwise (22)

Kblue = Kred =

0.25 0.5 0.25
0.5 1 0.5

0.25 0.5 0.25

 (23)

Kgreen =

 0 0.25 0
0.25 1 0.25

0 0.25 0

 (24)

In this case, simulated GRGB Bayer array is demosaiced
by linear interpolation.

8 Conclusions and future work

This paper presents simulation of camera imperfections
applied to computer generated images. The purpose of the
simulation is to get computer generated images with fea-
tures close to the features of images captured by real ca-
meras. Such images can be used for image processing and
computer vision applications testing. Some of the simula-
ted imperfections can also be applied to high quality cam-
era images to simulate output from lower quality cameras.
The simulation of the camera imperfections is complex
and presented solution still can be improved. Some of the
features, such as distortion, chromatic abberation or vi-
gnetting can be simulated successfully. On the other hand,
some others, such as lens flare, are very difficult to simu-
late because every camera has slightly different lenses that
require individual and rather complex model.

Current version of the simulator is capable to process
0.9 frames per second. The test was performed with use of
Intel(R) Core(TM)2 Duo P7350 2GHz on the image with
resolution 640x480. In the future, we will optimize some
of the algorithms, expecting an increase in performance.

Future versions of the simulator will allow simulation of
more features, such as CCD sensor blooming, CCD streak-
ing and more. Future works will also include modification
of noise model. In order to improve the simulation, we
will modify the implementation of the lens flare and we
also will use more complex models of some imperfections.
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