Detail výsledku

Parametric Multi-Step Scheme for GPU-Accelerated Graph Decomposition into Strongly Connected Components

ČEŠKA, M.; ALDEGHERI, S.; BARNAT, J.; BOMBIERI, N.; BUSATO, F. Parametric Multi-Step Scheme for GPU-Accelerated Graph Decomposition into Strongly Connected Components. In Proceedings of 2nd Workshop on Performance Engineering for Large Scale Graph Analytics. Lecture Notes in Computer Science. Cham: Springer Verlag, 2016. p. 519-531. ISBN: 978-3-319-58942-8.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Češka Milan, doc. RNDr., Ph.D., UITS (FIT)
Aldegheri Stefano
Barnat Jiří, prof.,RNDr., Ph.D.
Bombieri Nicola
Busato Federico
Abstrakt

The problem of decomposing a directed graph into strongly connected components (SCCs) is a fundamental graph problem that is inherently present in many scientific and commercial applications. Clearly, there is a strong need for good high-performance, e.g., GPU-accelerated, algorithms to solve it. Unfortunately, among existing GPU-enabled algorithms to solve the problem, there is none that can be considered the best on every graph, disregarding the graph characteristics. Indeed, the choice of the right and most appropriate algorithm to be used is often left to inexperienced users. In this paper, we introduce a novel parametric multi-step scheme to evaluate existing GPU-accelerated algorithms for SCC decomposition in order to alleviate the burden of the choice and to help the user to identify which combination of existing techniques for SCC decomposition would fit an expected use case the most. We support our scheme with an extensive experimental evaluation that dissects correlations between the internal structure of GPU-based algorithms and their performance on various classes of graphs. The measurements confirm that there is no algorithm that would beat all other algorithms in the decomposition on all of the classes of graphs. Our contribution thus represents an important step towards an ultimate solution of automatically adjusted scheme for the GPU-accelerated SCC decomposition.

Klíčová slova


strongly connected components
GPU-accelerated algorithms
parametric multi-step algorithms
performance evaluation

Rok
2016
Strany
519–531
Sborník
Proceedings of 2nd Workshop on Performance Engineering for Large Scale Graph Analytics
Řada
Lecture Notes in Computer Science
Svazek
10104
Konference
Performance Engineering for Large Scale Graph Analytics
ISBN
978-3-319-58942-8
Vydavatel
Springer Verlag
Místo
Cham
DOI
UT WoS
000529303100042
EID Scopus
BibTeX
@inproceedings{BUT144402,
  author="Milan {Češka} and Stefano {Aldegheri} and Jiří {Barnat} and Nicola {Bombieri} and Federico {Busato}",
  title="Parametric Multi-Step Scheme for GPU-Accelerated Graph Decomposition into Strongly Connected Components",
  booktitle="Proceedings of 2nd Workshop on Performance Engineering for Large Scale Graph Analytics",
  year="2016",
  series="Lecture Notes in Computer Science",
  volume="10104",
  pages="519--531",
  publisher="Springer Verlag",
  address="Cham",
  doi="10.1007/978-3-319-58943-5\{_}42",
  isbn="978-3-319-58942-8"
}
Projekty
Efektivní automaty pro formální rozhodování, GAČR, Juniorské granty, GJ16-24707Y, zahájení: 2016-01-01, ukončení: 2018-12-31, ukončen
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Spolehlivost a bezpečnost v IT, VUT, Vnitřní projekty VUT, FIT-S-14-2486, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru