Publication Details

A 3D digital Jordan-Brouwer separation theorem

ŠLAPAL Josef. A 3D digital Jordan-Brouwer separation theorem. Computational and Applied Mathematics, vol. 39, no. 11, 2020, pp. 1-10. ISSN 1807-0302. Available from: https://link.springer.com/content/pdf/10.1007%2Fs40314-020-01249-w.pdf
Czech title
3D digitální Jordan-Brouwer separační věta
Type
journal article
Language
english
Authors
Šlapal Josef, prof. RNDr., CSc. (RCIT FIT BUT)
URL
Keywords

n-ary relation, connectedness, digital space, digital surface, Jordan-Brouwer separation theorem

Abstract

We introduce and discuss a concept of connectedness induced by an n-ary relation (n>1 an integer). In particular, for every integer n>1, we define an n-ary relation R on the digital line  Z and equip the digital space  with the n-ary relation S obtained as a special product of three copies of R. For n=2, the connectedness induced by S  coincides with the connectedness given by the Khalimsky topology on the 3D digital space and we show that, for every integer n>2, it allows for a digital analog of the Jordan-Brouwer separation theorem for three-dimensional spaces. An advantage of the connectedness induced by S over that given by the Khalimsky topology is shown, too.

Published
2020
Pages
1-10
Journal
Computational and Applied Mathematics, vol. 39, no. 11, ISSN 1807-0302
Publisher
Brazilian Society of Computational and Applied Mathematics
DOI
UT WoS
000553137100002
EID Scopus
BibTeX
@ARTICLE{FITPUB12321,
   author = "Josef \v{S}lapal",
   title = "A 3D digital Jordan-Brouwer separation theorem",
   pages = "1--10",
   journal = "Computational and Applied Mathematics",
   volume = 39,
   number = 11,
   year = 2020,
   ISSN = "1807-0302",
   doi = "10.1007/s40314-020-01249-w",
   language = "english",
   url = "https://www.fit.vut.cz/research/publication/12321"
}
Back to top