Publication Details

Energy Complexity of Convolutional Neural Networks

ŠÍMA Jiří, VIDNEROVÁ Petra and MRÁZEK Vojtěch. Energy Complexity of Convolutional Neural Networks. Neural Computation, vol. 36, no. 8, 2024, pp. 1601-1625. ISSN 0899-7667.
Czech title
Energetická složitost konvolučních neuronových sítí
Type
journal article
Language
english
Authors
Šíma Jiří, doc. RNDr., DrSc. (ICS CAS)
Vidnerová Petra (ÚI AV ČR)
Mrázek Vojtěch, Ing., Ph.D. (DCSY FIT BUT)
Keywords

energy complexity, upper bound, lower bound, convolutional neural networks

Abstract

The energy efficiency of hardware implementations of convolutional neural networks (CNNs) is critical to their widespread deployment in low-power mobile devices. Recently, a number of methods have been proposed for providing energy-optimal mappings of CNNs onto diverse hardware accelerators. Their estimated energy consumption is related to specific implementation details and hardware parameters, which does not allow for machine-independent exploration of CNN energy measures. In this letter, we introduce a simplified theoretical energy complexity model for CNNs, based on only a two-level memory hierarchy that captures asymptotically all important sources of energy consumption for different CNN hardware implementations. In this model, we derive a simple energy lower bound and calculate the energy complexity of evaluating a CNN layer for two common data flows, providing corresponding upper bounds. According to statistical tests, the theoretical energy upper and lower bounds we present fit asymptotically very well with the real energy consumption of CNN implementations on the Simba and Eyeriss hardware platforms, estimated by the Timeloop/Accelergy program, which validates the proposed energy complexity model for CNNs.

Published
2024
Pages
1601-1625
Journal
Neural Computation, vol. 36, no. 8, ISSN 0899-7667
Publisher
MIT Press
DOI
UT WoS
001272123000003
EID Scopus
BibTeX
@ARTICLE{FITPUB13243,
   author = "Ji\v{r}\'{i} \v{S}\'{i}ma and Petra Vidnerov\'{a} and Vojt\v{e}ch Mr\'{a}zek",
   title = "Energy Complexity of Convolutional Neural Networks",
   pages = "1601--1625",
   journal = "Neural Computation",
   volume = 36,
   number = 8,
   year = 2024,
   ISSN = "0899-7667",
   doi = "10.1162/neco\_a\_01676",
   language = "english",
   url = "https://www.fit.vut.cz/research/publication/13243"
}
Back to top