Detail výsledku

Hardware and Software Optimizations for Capsule Networks

MARCHISIO, A.; BUSSOLINO, B.; COLUCCI, A.; MRÁZEK, V.; HANIF, M.; MARTINA, M.; MASERA, G.; SHAFIQUE, M. Hardware and Software Optimizations for Capsule Networks. In Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing. Cham: Springer Nature Switzerland AG, 2023. p. 303-328. ISBN: 978-3-031-39932-9.
Typ
kapitola, resp. kapitoly v odborné knize
Jazyk
anglicky
Autoři
MARCHISIO, A.
BUSSOLINO, B.
COLUCCI, A.
Mrázek Vojtěch, Ing., Ph.D., UPSY (FIT)
HANIF, M.
MARTINA, M.
MASERA, G.
Shafique Muhammad, FIT (FIT)
Abstrakt

Among advanced Deep Neural Network models, Capsule Networks (CapsNets) have shown high learning and generalization capabilities for advanced tasks. Their capability to learn hierarchical information of features makes them appealing in many applications. However, their compute-intensive nature poses several challenges for their deployment on resource-constrained devices. This chapter provides an optimization flow at the software and at the hardware level for improving the energy efficiency of the CapsNets' execution. 

Klíčová slova

capsule networks, hardware, software, neural architecture search

Rok
2023
Strany
303–328
Kniha
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
ISBN
978-3-031-39932-9
Vydavatel
Springer Nature Switzerland AG
Místo
Cham
DOI
EID Scopus
BibTeX
@inbook{BUT193587,
  author="MARCHISIO, A. and BUSSOLINO, B. and COLUCCI, A. and MRÁZEK, V. and HANIF, M. and MARTINA, M. and MASERA, G. and SHAFIQUE, M.",
  title="Hardware and Software Optimizations for Capsule Networks",
  booktitle="Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing",
  year="2023",
  publisher="Springer Nature Switzerland AG",
  address="Cham",
  pages="303--328",
  doi="10.1007/978-3-031-39932-9\{_}12",
  isbn="978-3-031-39932-9"
}
Projekty
Application-specific HW/SW architectures and their applications, VUT, Vnitřní projekty VUT, FIT-S-23-8141, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Výzkumné skupiny
Pracoviště
Nahoru