Publication Details
Telegraph Equation and Corresponding Wave Forms
Szöllös Alexandr, Ing. (DITS FIT BUT)
Šátek Václav, Ing., Ph.D. (DITS FIT BUT)
Telegraph equation, Differential equations, Modern Taylor Series Method, Stiff systems
Taylor series method for solving differential equations represents
a non-traditional way of a numerical solution. Even
though this method is not much preferred in the literature,
experimental calculations done at the Department of Intelligent
Systems of the Faculty of Information Technology of
TU Brno have verified that the accuracy and stability of the
Taylor series method exceeds the currently used algorithms
for numerically solving differential equations.
This paper deals with numerical solution of Telegraph
equation using modeling of a series small pieces of the
wire. Corresponding differential equations are solved by the
Modern Taylor Series Method. As the solution is represented
by a stiff problem, implicit numerical methods are presented.
@INPROCEEDINGS{FITPUB9730, author = "Ji\v{r}\'{i} Kunovsk\'{y} and Alexandr Sz{\"{o}}ll{\"{o}}s and V\'{a}clav \v{S}\'{a}tek", title = "Telegraph Equation and Corresponding Wave Forms", pages = 4, booktitle = "Proceeding of the 12th International Scientific Conference Electric Power Engineering 2011", year = 2011, location = "Ostrava, CZ", publisher = "V\v{S}B-Technical University of Ostrava", ISBN = "978-80-248-2393-5", language = "english", url = "https://www.fit.vut.cz/research/publication/9730" }