Detail publikace

Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements

DALÍK, J.; VALENTA, V. Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements. CENT EUR J MATH, 2013, vol. 4, no. 11, p. 597-608. ISSN: 1895-1074.
Název česky
Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements
Typ
článek v časopise
Jazyk
anglicky
Autoři
Dalík Josef, doc. RNDr., CSc.
Valenta Václav, Ing., Ph.D.
Klíčová slova

A posteriori error estimator; Adaptive solution of elliptic differential problems in 2D; Averaging partial derivatives; Linear triangular and bilinear rectangular finite element; Nonobtuse regular triangulation

Abstrakt

An averaging method for the second-order approximation of the values of the gradient of an arbitrary smooth function u = u(x1, x2) at the vertices of a regular triangulation Th composed both of rectangles and triangles is presented. The method assumes that only the interpolant \PI_h[u] of u in the finite element space of the linear triangular and bilinear rectangular finite elements from Th is known. A complete analysis of this method is an extension of the complete analysis concerning the finite element spaces of linear triangular elements from [Dalík J., Averaging of directional derivatives in vertices of nonobtuse regular triangulations, Numer. Math., 2010, 116(4), 619-644]. The second-order approximation of the gradient is extended from the vertices to the whole domain and applied to the a posteriori error estimates of the finite element solutions of the planar elliptic boundary-value problems of second order. Numerical illustrations of the accuracy of the averaging method and of the quality of the a posteriori error estimates are also presented.

Rok
2013
Strany
597–608
Časopis
CENT EUR J MATH, roč. 4, č. 11, ISSN 1895-1074
Vydavatel
VERSITA
Místo
Velká Británie
BibTeX
@article{BUT98047,
  author="Josef {Dalík} and Václav {Valenta}",
  title="Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements",
  journal="CENT EUR J MATH",
  year="2013",
  volume="4",
  number="11",
  pages="597--608",
  issn="1895-1074"
}
Nahoru