Course details

Intelligent Systems

ISD Acad. year 2018/2019 Summer semester

Current academic year

Tolerance of imprecision and uncertainty as main attribute of ISY. Intelligent systems based on combinations of several theories - neural networks, fuzzy sets, rough sets and genetic algorithms: expert systems, intelligent information systems, machine translation systems, intelligent sensor systems, intelligent control systems, intelligent robotic systems.

Guarantor

Language of instruction

Czech, English

Completion

Examination

Time span

  • 26 hrs lectures
  • 26 hrs projects

Assessment points

  • 60 pts final exam
  • 40 pts projects

Department

Subject specific learning outcomes and competences

Students acquire knowledge of principles of intelligent systems and so they will be able to design these systems for solving of various practical problems.

Learning objectives

To give the students the knowledge of intelligent systems design (control, production, etc.) based on combinations of theories of neural networks, fuzzy sets, rough sets and genetic algorithms.

Prerequisite knowledge and skills

Basic knowledge of artificial intelligence in a scope of Fundamentals of Artificial Intelligence course of current study program in FIT. 

Study literature

  • Kecman, V.: Learning and Soft Computing, The MIT Press, 2001, ISBN 0-262-11255-8
  • Mitchell, H. B.: Multi-Sensor Data Fusion, Springer-Verlag Berlin Heidelberg 2007, ISBN 978-3-540-71463-7
  • Negnevitsky M.: Artificial Intelligence - A Guide to Intelligent systems, Pearson Education Limited 2002, ISBN 0201-71159-1
  • Munakata,T.: Fundamentals of the New Artificial Intelligence, Springer, 2008, ISBN 978-1-84628-838-8
  • Zaknih, A.: Neural Networks for Intelligent Signal Processing, World Scientific Publishing Co. Pte. Ltd., 2003, ISBN 981-238-305-0
  • Shi, Z.: Advanced Artificial Intelligence, World Scientific Publishing Co. Pte. Ltd., 2011, ISBN-13 978-981-4291-34-7
  • Rutkowski, L.: Flexible Neuro-Fuzzy Systems, Kluwer Academic Publishers, 2004, ISBN: 1-4020-8042-5
  • Iba, H., Noman, N.: New Frontier in Evolutionary Algorithms, Imperial College Press, 2012, ISBN-13 978-1-84816-681-3
  • Liu, P., Li, H.: Fuzzy Neural Network Theory and Application, World Scientific Publishing Co. Pte. Ltd., 2004, ISBN 981-538-786-2

Syllabus of lectures

  1. Introduction, soft computing and ISY
  2. Expert systems
  3. Intelligent information systems
  4. Machine translation systems
  5. Surrounding environment perception, intelligent sensor systems
  6. Analysis of sensor data, environment model design
  7. Planning of given tasks accomplishments
  8. Control systems with neural networks
  9. Fuzzy control systems
  10. Neuro-fuzzy systems
  11. Utilization of rough sets and genetic algorithms in ISY
  12. Intelligent robotic systems
  13. Navigation of mobile robots

Syllabus - others, projects and individual work of students

  • Individual projects - designs of intelligent systems for solving some practical problem

Course inclusion in study plans

Back to top