Course details

Computer Vision (in English)

POVa Acad. year 2018/2019 Winter semester 5 credits

Current academic year

Principles and methods of computer vision, methods and principles of image acquiring, preprocessing methods (statistical processing), filtering, pattern recognition, integral transformations - Fourier transform, image morphology, classification problems, automatic classification, D methods of computer vision, open problems of computer vision.

Guarantor

Language of instruction

English

Completion

Examination (written)

Time span

  • 26 hrs lectures
  • 26 hrs projects

Assessment points

  • 51 pts final exam (15 pts written part, 36 pts test part)
  • 9 pts mid-term test (3 pts written part, 6 pts test part)
  • 40 pts projects

Department

Lecturer

Instructor

Subject specific learning outcomes and competences

The students will get acquainted with the principles and methods of computer vision. They will learn in more detail selected methods and algorithms of vision and image acquiring. They will also get acquainted with the possibilities of the scanned data processing. Finally, they will learn how to apply the gathered knowledge practically.
The students will improve their teamwork skills, mathematics, and exploitation of the "C" language.

Learning objectives

To get acquainted with the principles and methods of computer vision. To learn in more detail selected methods and algorithms of vision and image acquiring. To get acquainted with the possibilities of the scanned data processing. To learn how to apply the gathered knowledge practically.

Study literature

  • Horn, B.K.P.: Robot Vision, McGraw-Hill, 1988, ISBN 0-07-030349-5
  • Bass, M.: Handbook of Optics, McGraw-Hill, New York, USA, 1995, ISBN 0-07-047740-X
  • Hlaváč, V., Šonka, M.: Počítačové vidění, Grada, 1993, ISBN 80-85424-67-3
  • Russ, J.C.: The IMAGE PROCESSING Handbook, CRC Press, 1995, ISBN 0-8493-2532-3

Fundamental literature

  • Horn, B.K.P.: Robot Vision, McGraw-Hill, 1988, ISBN 0-07-030349-5
  • Hlaváč, V., Šonka, M.: Počítačové vidění, Grada, 1993, ISBN 80-85424-67-3 
  • Russ, J.C.: The IMAGE PROCESSING Handbook, CRC Press, 1995, ISBN 0-8493-2532-3
  • Bass, M.: Handbook of Optics, McGraw-Hill, New York, USA, 1995, ISBN 0-07-047740-X

Syllabus of lectures

  1. Úvod, základy, motivace a aplikace/Introduction, motivation and applications (Hradiš 20.9. slajdy, slajdy, highlights)
  2. Základní principy klasifikace s učitelem - AdaBoost/Basic principles of machine learning with teacher - AdaBoost  (Zemčík 27.9. slajdy-cz, slides-en)
  3. Shlukování, statistické metody/Clustering, statistical methods (Španěl 4.10. slajdy)
  4. Segmentace, analýza barev, analýza histogramu/Segmentation, colour analysis, histogram analysis (Španěl 11.10. slajdy1, slajdy2, slajdy3)
  5. Segmentace,  analýza barev/Segmentation, Colour Analysis, ... finishing (Španěl), Object Detection - Trees (Juránek, 18.10. slajdy-en)
  6. Analýza a extrakce příznaků z textur/Analysis and Feature Extraction from Images (Čadík 25.10. slajdy)
  7. Hough transform, RHT, RANSAC, zpracování časových sekvencí/Time Sequence Processing (Hradiš, 1.11. slajdy1slajdy2, slajdy2-en)
  8. Invariantní Oblasi Obrazu/Invariant Image Regions (Beran, 8.11. slajdy)
  9. Test, Konvoluční neuronové sítě a Tagování obrazu/Convolutional Neural Networks and Automatic Image Tagging (Hradiš, 15.11. slajdy )
  10. Konvoluční neuronové sítě a Tagování obrazu/Convolutional Neural Networks and Automatic Image Tagging II (Hradiš, 22.11. slajdy )
  11. Registrace obrazu (Čadík, 29.11., slajdy)
  12. 3D Vision/3D Vidění (6.12. Richter FEKT slajdy)
  13. Akcelerace zpracování obrazu, závěr (Zemčík, 13.12.)

POZOR!!! Témata přednášek i data jsou orientační a budou v průběhu semestru aktualizována.

NOTE: The topics and dates are just FYI, not guaranteed,  and will be continuously updated.

Syllabus - others, projects and individual work of students

  1. Homeworks (4-5 runs) at the beginning of semester
  2. Individually assigned project for the whole duration of the course.

Progress assessment

Homeworks, Mid-term test, individual project.

Course inclusion in study plans

Back to top