Course details

Image Processing

ZPO Acad. year 2019/2020 Summer semester 5 credits

Current academic year

Introduction to image processing, image acquiring, point and discrete image transforms, linear image filtering, image distortions, types of noise, optimal image filtering, non-linear image filtering, watermarks, edge detection, segmentation, motion analysis, loseless and lossy image compression

Guarantor

Course coordinator

Language of instruction

Czech, English

Completion

Examination (written)

Time span

  • 26 hrs lectures
  • 26 hrs projects

Assessment points

  • 51 pts final exam (45 pts written part, 6 pts test part)
  • 10 pts mid-term test (8 pts written part, 2 pts test part)
  • 39 pts projects

Department

Lecturer

Instructor

Subject specific learning outcomes and competences

The students will get acquainted with the image processing basics theory (transformations, filtration, noise reduction, etc.). They will learn how to apply such knowledge on real examples of image processing tasks. They will also get acquainted with "higher" imaging algorithms. Finally, they will learn how to practically program image processing applications through projects.
Students will improve their teamwork skills and in exploitation of "C" language.

Learning objectives

To get acquainted with the image processing basics theory (transformations, filtration, noise reduction, etc.). To learn how to apply such knowledge on real examples of image processing tasks. To get acquainted with "higher" imaging algorithms. To learn kow to practically program image processing applications through projects.

Recommended prerequisites

Prerequisite knowledge and skills

The C programming language and fundamentals of computer graphics.

Study literature

  • Hlaváč, V., Šonka, M.: Počítačové vidění, GRADA 1992, ISBN 80-85424-67-3
  • Šonka, M., Hlaváč, V., Boyle, R.: Image processing, Analysis, and Machine Vision, THOMSON 2013, ISBN-13: 978-9386858146
  • IEEE Multimedia, IEEE, USA - série časopisů - různé články
  • Jahne, B.: Handbook of Computer Vision and Applications, Academic Press, 1999, ISBN 0-12-379770-5
  • Russ, J.C.: The Image Processing Handbook, CRC Press 1995, ISBM 0-8493-2516-1

Fundamental literature

  • Hlaváč, V., Šonka, M.: Počítačové vidění, GRADA 1992, ISBN 80-85424-67-3
  • Jahne, B.: Handbook of Computer Vision and Applications, Academic Press, 1999, ISBN 0-12-379770-5
  • Russ, J.C.: The Image Processing Handbook, CRC Press 1995, ISBM 0-8493-2516-1

Syllabus of lectures

  1. Introduction, representation of image, linear filtration  (7. 2. 2020 Beran slides, slides, slides, demo)
  2. Point image transforms (14. 2. 2020 Beran slidesdemo.zip)
  3. Image acquisition (21. 2. 2020 Zemčík slides)
  4. Discrete image transforms, FFT, relationship with filtering (Zemčík 28. 2. 2020 slajdy a slides)
  5. Image distortion, types of noise, optimal filtration (6. 3. 2020 Španěl slides)
  6. Edge detection, segmentation (13. 3. 2020 Beran slides, examples)
  7. DCT, Wavelets (20. 3. 2020 Bařina slides)
  8. Resampling, warping, morphing (27. 3. 2020 Zemčík slides)
  9. Test, Project status presentation, mathematical morphology (3. 4. 2020 Beran slides)
  10. Good Friday - lecture cancelled (10. 4. 2020)
  11. Watermarks (17. 4. 2020 Zemčík slidesdemo)
  12. Lecture from industry, motion analysis, conclusion (24. 4. 2020, Beran slides)

Syllabus - others, projects and individual work of students

  1. Individually assigned project for the whole duration of the course.

Progress assessment

Mid-term test, project (homeworks and individual project).

Course inclusion in study plans

Back to top