Course details
Optimal Control and Identification
ORID Acad. year 2022/2023 Winter semester
The "Optimal Control and Identification" is suitable for students of IT and related fields and its goal is to explain the principles of automatic control in a suitable way. The course does not intend to train specialists in controller design but rather to exlpain to the graduates of the course what control means and how to approach various tasks of automatic control.
Doctoral state exam - topics:
- Tasks of optimal control, static and dynamic optimization of deterministic, stochastic and adaptive control.
- Dynamac optimization, forms of loss functions, border conditions, Euler-Lagrange equation.
- Limitation of shapes of control non-equations and Pontrjagin principle of minimum.
- Dynamic programming, design of loss functions, Hamiltona-Jakobiho-Bellman equation.
- Linear controller, design of loss function, Riccati equation.
- Repeating of characteristics of random processes, mean values, dispersion, correlation, covariation, Wiener-Chincin relationships, Parceval theorem, while and "color" noise, transformation of random signals in linear system.
- Overview of Bayesovs estimations, loss and risk functions, general principle of dynamic filtration.
- Linear dynamic (Kalman) filter, its design, conversion to discrete filter, generalization of dynamic filter, Wiener filter.
- Parallel identification of system and trajectory as well as generalized state vector, linearized Kalman filter, contruction of selected non-linear filters.
- Stochastic control, linear quadratic Gauss problem, continuous and discrete stochastic state regulator and servo mechanism.
- Adaptive systems, parallel identification of status, parameters, and control, most frequent structures of adaptive systems.
- Classic methods of regulations.
Guarantor
Language of instruction
Completion
Time span
- 26 hrs lectures
- 13 hrs projects
Assessment points
- 100 pts final exam
Department
Subject specific learning outcomes and competences
Knowledge of the tasks of optimal control, static and dynamic optimization of deterministic, stochastic and adaptive control. Introductory knowledge of dynamac optimization, forms of loss functions, border conditions, Euler-Lagrange equation. Knowledge of limitation of shapes of control non-equations and Pontrjagin principle of minimum. Understanding of dynamic programming, design of loss functions, Hamiltona-Jakobiho-Bellman equation. Introductory knowledge of linear controller, design of loss function, Riccati equation. Repeating of characteristics of random processes, mean values, dispersion, correlation, covariation, Wiener-Chincin relationships, Parceval theorem, while and "color" noise, transformation of random signals in linear system. Overview of Bayesovs estimations, loss and risk functions, general principle of dynamic filtration. Knowledge of linear dynamic (Kalman) filter, its design, conversion to discrete filter, generalization of dynamic filter, Wiener filter. Knowledge of parallel identification of system and trajectory as well as generalized state vector, linearized Kalman filter, contruction of selected non-linear filters. Overview of stochastic control, linear quadratic Gauss problem, continuous and discrete stochastic state regulator and servo mechanism. Knowledge of adaptive systems, parallel identification of status, parameters, and control, most frequent structures of adaptive systems.
Learning objectives
THe goal of the course is to, using suitable forms, explain principles of automatic control. The tasks of optimal control will be formulated in a general way as optimization tasks. Similarly, the stochastic methods of control and identification are explained. Classical methods of control will be considered as partial general tasks solved using contemporary mathoematics apparatus and possibilities.
Prerequisite knowledge and skills
Basic knowledge of signal processing and mathematical statistics.
Study literature
- Astrom,K.J.-Wittenmark,B.: Computer Controlled Systems. Prentice-Hall,1990.
- Sage, A.P.: Estimation Theory with Application to Communication and control. N.Y. 1972.
- Dimitri Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 4th Ed., 2017.
Syllabus of lectures
The indicative outline of the course is shown below. The topics of the lectures will be adjusted based in the initial knowledge of students. The end of the course is expected in a form of seminars and individual presentations.
- Tasks of optimal control, static and dynamic optimization of deterministic, stochastic and adaptive control.
- Dynamac optimization, forms of loss functions, border conditions, Euler-Lagrange equation.
- Limitation of shapes of control non-equations and Pontrjagin principle of minimum.
- Dynamic programming, design of loss functions, Hamiltona-Jakobiho-Bellman equation.
- Linear controller, design of loss function, Riccati equation.
- Repeating of characteristics of random processes, mean values, dispersion, correlation, covariation, Wiener-Chincin relationships, Parceval theorem, while and "color" noise, transformation of random signals in linear system.
- Overview of Bayesovs estimations, loss and risk functions, general principle of dynamic filtration.
- Linear dynamic (Kalman) filter, its design, conversion to discrete filter, generalization of dynamic filter, Wiener filter.
- Parallel identification of system and trajectory as well as generalized state vector, linearized Kalman filter, contruction of selected non-linear filters.
- Stochastic control, linear quadratic Gauss problem, continuous and discrete stochastic state regulator and servo mechanism.
- Adaptive systems, parallel identification of status, parameters, and control, most frequent structures of adaptive systems.
Syllabus - others, projects and individual work of students
Individual projects whose results will be presented in a form of seminar in at end of the course.
Progress assessment
Presentations in the form of a seminar.
Controlled instruction
Oral exam.
Course inclusion in study plans
- Programme DIT, any year of study, Compulsory-Elective group O
- Programme DIT, any year of study, Compulsory-Elective group O
- Programme DIT-EN (in English), any year of study, Compulsory-Elective group O
- Programme DIT-EN (in English), any year of study, Compulsory-Elective group O
- Programme VTI-DR-4, field DVI4, any year of study, Elective
- Programme VTI-DR-4, field DVI4, any year of study, Elective
- Programme VTI-DR-4 (in English), field DVI4, any year of study, Elective
- Programme VTI-DR-4 (in English), field DVI4, any year of study, Elective