Course details
Physical Optics (in English)
FYOe Acad. year 2024/2025 Summer semester 5 credits
Electromagnetic waves and light. Fresnel's equations. Reflection at dielectric and metallic surfaces, polarization. Coherence, interference from thin films. Diffraction by 2D and 3D structures. Holography, holography code, reconstruction of optic field. Transmission of light through media. Dispersion, absorption. Scattering. Thermal radiation. Elements of image-forming systems. Analytical ray tracing. Matrix concept. Errors in image forming. Quantum mechanical principles of radiation. Spectra of atoms and molecules. Physical statistics. Photon. Stimulated and spontaneous emission. Lasers. The basis of luminiscence. Radioactive radiation.
Guarantor
Language of instruction
Completion
Time span
- 26 hrs lectures
- 13 hrs seminar
- 13 hrs projects
Assessment points
- 60 pts final exam
- 10 pts mid-term test
- 30 pts projects
Department
Lecturer
Instructor
Learning objectives
To learn the basic principles of the physical optics needed for computer graphics. Extend the general knowledge of optics and get acquainted with the modern optics. To learn how to apply the gathered knowledge on real tasks. To get acquainted with further physics principles important for computer graphics.
The students will learn the basic principles of the physical optics needed for computer graphics. They will extend their general knowledge of optics and get acquainted with the modern optics. They will also learn how to apply the gathered knowledge on real tasks. Finally, they will get acquainted with further physics principles important for computer graphics.
Why is the course taught
The course aims to introduce basic principles of optics with emphasis on the practical side, thus, the student will avoid the fundamental errors in capturing visual information, its processing, its interpretation and its modeling in terms of computer graphics.
Prerequisite knowledge and skills
Fundamentals of physics at secondary school level
Fundamental literature
- Hecht, E., Zajac, A.: Optics, Addison-Wesley, Reading, UK, 1977, ISBN 0-201-02835-2
- Saleh, B. E. A, Teich, M. C.: Fundamentals of Photonics, Wiley 2007, USA, 978-0-471-35832-9
- Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, Willey, New York, USA, 1997, ISBN 0-471-10559-7
- Malý, P.: Optika (2ed), Karolinum, 2013, ISBN 978-80-246-2246-0
Syllabus of lectures
- Electromagnetic waves and light.
- Light at the interface of two media, Fresnel's equations. Reflection at dielectric and metallic surfaces, linear and elliptical polarization. Polarizers.
- Coherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
- Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
- Transmission of light through media. Dispersion, spectrometers, rainbow. Absorption. Scattering.
- Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
- Elements of image-forming systems. Mirrors, prisms, lenses, the microscope, the telescopes. The Fermat principle.
- Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power. Errors in image forming. Notes on fiber optics.
- The quantum mechanical concept of radiation. The wave function, the Schroedinger equation, the uncertainty principle. The tunnel effect.
- Energy levels, the Pauli exclusion principle, energy bands. Spectra of atoms and molecules. Selection rules.
- Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
- The basics of luminiscence, phosphors, fluorescence, phosphorescence.
- Radioactive radiation.
Syllabus of seminars
- Electromagnetic waves and light.
- Light at the interface of two media, Fresnel's equations. Reflection at dielectric and metallic surfaces, linear and elliptical polarization. Polarizers.
- Coherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
- Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
- Transmission of light through media. Dispersion, spectrometers, rainbow. Absorption. Scattering.
- Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
- Elements of image-forming systems. Mirrors, prisms, lenses, the microscope, the telescopes. The Fermat principle.
- Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power. Errors in image forming. Notes on fiber optics.
- The quantum mechanical concept of radiation. The wave function, the Schroedinger equation, the uncertainty principle. The tunnel effect.
- Energy levels, the Pauli exclusion principle, energy bands. Spectra of atoms and molecules. Selection rules.
- Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
- The basics of luminiscence, phosphors, fluorescence, phosphorescence.
- Radioactive radiation.
Syllabus - others, projects and individual work of students
Individually assigned projects; it is expected that the "programming part" of the assignment will be consulted and evaluated in other course (more computer science oriented).
Progress assessment
- Mid-term exam - up to 10 points
- Project - up to 30 points
- Written exam - up to 60 points
Schedule
Day | Type | Weeks | Room | Start | End | Capacity | Lect.grp | Groups | Info |
---|---|---|---|---|---|---|---|---|---|
Tue | lecture | lectures | A113 | 09:00 | 10:50 | 64 | 1EIT 2EIT | xx | Sedlák |
Tue | seminar | lectures | A113 | 11:00 | 12:50 | 64 | 1EIT 2EIT | xx | Sedlák |
Course inclusion in study plans
- Programme MIT-EN (in English), any year of study, Elective