Detail předmětu

Grafové algoritmy (v angličtině)

GALe Ak. rok 2024/2025 zimní semestr 5 kreditů

Předmět diskutuje různé reprezentace grafů v počítači a grafové algoritmy pro problémy typu prohledávání grafů (do hloubky, do šířky), topologické uspořádání grafů, hledání komponent grafu a silně souvislých komponent, stromy a minimální kostry, nejkratší cesty z jednoho vrcholu do všech ostatních či ze všech vrcholů do všech ostatních, maximální tok a minimální řez, maximální párování v bipartitních grafech, Eulerovské grafy a barvení grafů. U všech algoritmů je kladen důraz na pochopení principu jejich fungování a na studium složitosti navržených algoritmů.

Odkazy

Garant předmětu

Koordinátor předmětu

Jazyk výuky

anglicky

Zakončení

zkouška (písemná)

Rozsah

  • 39 hod. přednášky
  • 13 hod. projekty

Bodové hodnocení

  • 60 bodů závěrečná zkouška (písemná část)
  • 15 bodů půlsemestrální test (písemná část)
  • 25 bodů projekty

Zajišťuje ústav

Přednášející

Cvičící

Cíle předmětu

Úvod do teorie grafů se zaměřením na reprezentace grafů, grafové algoritmy a jejich složitosti.

Schopnost sestrojit algoritmus pro grafový problém a analyzovat jeho časovou a prostorovou složitost.

Požadované prerekvizitní znalosti a dovednosti

Základní znalost diskrétní matematiky a schopnost algoritmického myšlení.

Literatura studijní

  • J. Demel, Grafy, SNTL Praha, 1988.
  • J. Demel, Grafy a jejich aplikace, Academia, 2002. (Více o knize)

Osnova přednášek

  1. Úvod do problematiky, složitost algoritmu, pojem a reprezentace grafu.
  2. Prohledávání grafu do šírky a do hloubky, dostupnost vrcholů.
  3. Topologické uspořádání vrcholů a hran, test acykličnosti grafu.
  4. Komponenty grafu, silně souvislé komponenty, příklady.
  5. Stromy, minimální kostry, Jarníkův a Borůvkův algoritmus.
  6. Růst minimální kostry, Kruskalův algoritmus a Primův algoritmus.
  7. Nejkratší cesty z jednoho vrcholu do všech ostatních vrcholů, Bellman-Fordův algoritmus, nejkratší cesta z jednoho vrcholu v orientovaných acyklických grafech.
  8. Dijkstrův algoritmus. Nejkratší cesty ze všech do všech vrcholů.
  9. Nejkratší cesty a násobení matic, Floyd-Warshallův algoritmus.
  10. Toky a řezy v sítích, maximální tok, minimální řez, Ford-Fulkersonův algoritmus.
  11. Párování v bipartitních grafech, maximální párování.
  12. Barvení grafů.
  13. Eulerovské grafy a tahy, Hamiltonovské grafy a kružnice.

Osnova ostatní - projekty, práce

  1. Řešení vybraných grafových problémů a prezentace řešení (princip, složitost, implementace, optimalizace).

Průběžná kontrola studia

Bodové hodnocení výsledků půlsemestrální zkoušky (max. 15 bodů) a vypracovaných projektů (max. 25 bodů).
Písemná půlsemestrální zkouška, průběžná kontrola a hodnocení projektů, závěrečná semestrální zkouška. Pro získání bodů ze zkoušky je nutné zkoušku vypracovat tak, aby byla hodnocena nejméně 25 body. V opačném případě bude zkouška hodnocena 0 body.

Rozvrh

DenTypTýdnyMístn.OdDoKapacitaPSKSkupInfo
Po zkouška 2025-01-20 E105 12:0014:50 GALe: 2. termín
Po zkouška 2025-02-03 A112 13:0015:50 GALe: 3. termín
Út zkouška 2024-11-12 L314 09:0011:00 GALe: Midterm exam
Út přednáška výuky L314 09:0011:5030 1EIT 2EIT INTE xx Křivka
Čt zkouška 2025-01-09 E104 10:0012:50 GALe: 1. termín

Zařazení předmětu ve studijních plánech

Nahoru