Course details
Mathematical Analysis 2
IMA2 Acad. year 2024/2025 Winter semester 4 credits
Series. The limit, continuity, partial derivatives and extrema of a function of several variables. Double and triple integrals. Differential equations. Analytical and numerical solutions of the initial problem.
Guarantor
Course coordinator
Language of instruction
Completion
Time span
- 26 hrs lectures
- 26 hrs exercises
Assessment points
- 80 pts final exam
- 20 pts numeric exercises
Department
Lecturer
Instructor
Kolářová Edita, doc. RNDr., Ph.D. (UMAT)
Vážanová Gabriela, Mgr., Ph.D. (UMAT)
Vítovec Jiří, Mgr., Ph.D. (UMAT)
Learning objectives
The main goal of the course is to enhance the knowledge of calculus from the previous semester and explain the basic principles and methods of higher calculus. The emphasis is put on handling the practical use of these methods for solving specific problems and the ability to understand the basic problems of higher calculus and use derivatives, integrals and differential equations for solving specific problems.
Recommended prerequisites
- Mathematical Analysis 1 (IMA1)
- Discrete Mathematics (IDM)
Prerequisite knowledge and skills
The IMA1 course.
Study literature
- Fong, Y., Wang, Y., Calculus, Springer, 2000.
- Ross, K. A., Elementary analysis: The Theory of Calculus, Springer, 2000.
- Small, D. B., Hosack, J. M., Calculus (An Integrated Approach), McGraw-Hill Publ. Comp., 1990.
- Thomas, G. B., Finney, R. L., Calculus and Analytic Geometry, Addison-Wesley Publ. Comp., 1994.
- Zill, D. G., A First Course in Differential Equations, PWS-Kent Publ. Comp., 1992.
Syllabus of lectures
- Number series.
- Power series.
- Fourier series.
- Differential calculus of functions of several variables I: limit, continuity, partial derivatives, Schwarz theorem.
- Differential calculus of functions of several variables II: differential, tangent plane, Taylor polynomial.
- Differential calculus of functions of more variables III: local extrema, Hess matrix, Sylvester criterion.
- Integral calculus of functions of several variables I (particularly in 2 and 3 dimensions): definitions and basic concepts.
- Integral calculus of functions of several variables II: multidimensional and multiple integrals, Fubini theorem.
- Integral calculus of functions of several variables III: evaluation and applications of double and triple integrals.
- Introduction to differential equations. Initial problem. Existence and uniqueness of a solution. Separable and linear equations.
- Numerical solution of differential equations of the first order.
Syllabus of numerical exercises
Problems discussed at numerical classes are chosen so as to complement suitably the lectures.
Progress assessment
Written tests during the semester (20 points for 3 tests). Classes are compulsory. Presence at lectures will not be controlled, absence at numerical classes has to be excused.
Schedule
Day | Type | Weeks | Room | Start | End | Capacity | Lect.grp | Groups | Info |
---|---|---|---|---|---|---|---|---|---|
Mon | exercise *) | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | T8/T 3.02 | 09:00 | 10:50 | 0 | 2BIA 2BIB 3BIT | xx | Fuchs |
Mon | lecture | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | D0206 D105 | 09:00 | 10:50 | 470 | 2BIA 3BIT | 10 - 19 xx | Vítovec |
Mon | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A112 | 11:00 | 12:50 | 64 | 2BIA 2BIB 3BIT | xx | Vítovec |
Mon | lecture | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | Aula profesora Braunera | 11:00 | 12:50 | 338 | 2BIB 3BIT | 20 - 29 xx | Kolářová |
Mon | exam | 2024-12-16 | T8/T 0.10 T8/T 0.30 | 13:00 | 15:00 | předtermín | |||
Mon | exercise *) | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A112 | 13:00 | 14:50 | 0 | 2BIA 2BIB 3BIT | xx | Fuchs |
Mon | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A112 | 15:00 | 16:50 | 64 | 2BIA 2BIB 3BIT | xx | Vítovec |
Mon | exercise *) | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A112 | 17:00 | 18:50 | 0 | 2BIA 2BIB 3BIT | xx | Vítovec |
Tue | exercise *) | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | T8/T 3.02 | 09:00 | 10:50 | 0 | 2BIA 2BIB 3BIT | xx | Kolářová |
Tue | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A113 | 10:00 | 11:50 | 65 | 2BIA 2BIB 3BIT | xx | Vážanová |
Tue | exam | 2025-01-07 | Aula profesora Braunera Aula profesora Kalendovského T12/SF 2.162 T8/T 0.10 T8/T 0.20 T8/T 0.30 | 10:30 | 12:30 | 1. termín | |||
Tue | exam | 2025-01-21 | Aula profesora Kalendovského T8/T 0.10 T8/T 0.20 T8/T 0.30 | 10:30 | 12:30 | 2. termín | |||
Tue | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A113 | 12:00 | 13:50 | 65 | 2BIA 2BIB 3BIT | xx | Vážanová |
Tue | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A112 | 15:00 | 16:50 | 65 | 2BIA 2BIB 3BIT | xx | Vážanová |
Tue | exercise *) | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A112 | 17:00 | 18:50 | 0 | 2BIA 2BIB 3BIT | xx | |
Wed | exam | 2025-02-05 | Aula profesora Braunera Aula profesora Kalendovského T12/SF 1.141 T12/SF 2.162 T8/T 0.10 T8/T 0.20 T8/T 0.30 | 10:30 | 12:30 | 3. termín | |||
Wed | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | T8/T 3.02 | 13:00 | 14:50 | 56 | 2BIA 2BIB 3BIT | xx | Fuchs |
Wed | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A112 | 15:00 | 16:50 | 65 | 2BIA 2BIB 3BIT | xx | Kolářová |
Wed | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | T8/T 3.02 | 15:00 | 16:50 | 56 | 2BIA 2BIB 3BIT | xx | Fuchs |
Wed | exercise | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | A112 | 17:00 | 18:50 | 65 | 2BIA 2BIB 3BIT | xx | Kolářová |
Thu | exercise *) | 1., 2., 3., 4., 5., 6., 8., 9., 10., 11., 12., 13. of lectures | T8/T 3.12 | 11:00 | 12:50 | 0 | 2BIA 2BIB 3BIT | xx | Kolářová |
Course inclusion in study plans
- Programme BIT, 2nd year of study, Compulsory
- Programme BIT (in English), 2nd year of study, Compulsory