Bayesian Models in Machine Learning

Bayesian GMM for Speaker Diarization (VBx-GMM)

Lukáš Burget, Mireia Diez

BAYa lectures, December 2023

Speaker Diarization

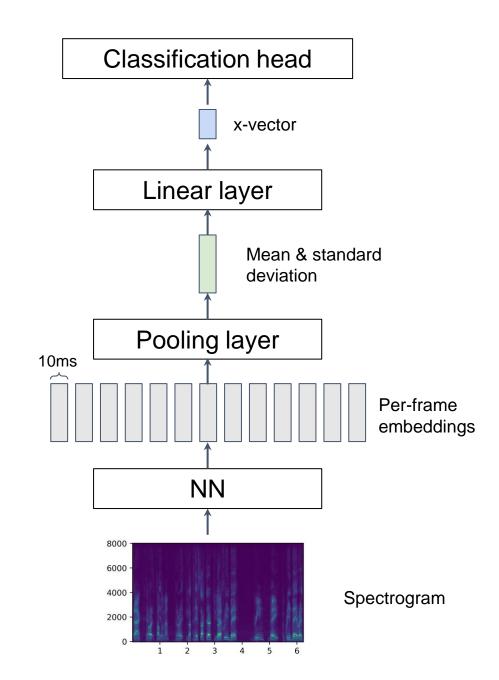
What is it?

The task of automatically determining the speaker turns in a recording of a conversation or finding "who spoke when"

Diarization system

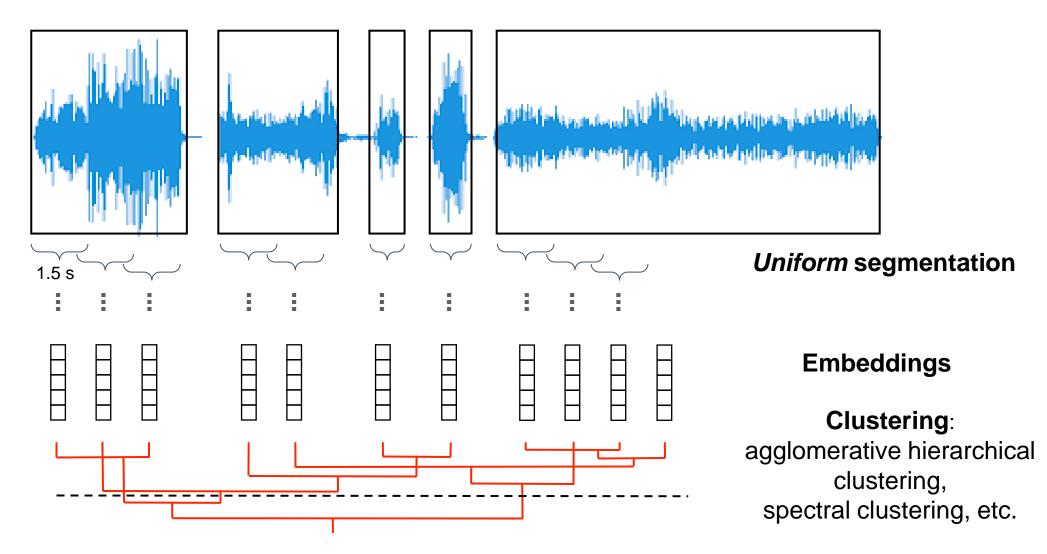
Embedding extraction

- Trained for **speaker recognition** task
 - On single speaker utterances
- x-vectors are the low-dimensionality embeddings representing the speaker characteristics of the input utterance
- Different **architectures** for the extraction of per-frame embedding extraction: TDNN, ResNet, etc.
- Several objectives can be used AAM loss, Softmax loss, etc.



Diarization system

Standard / Traditional / Cascade / Module-based

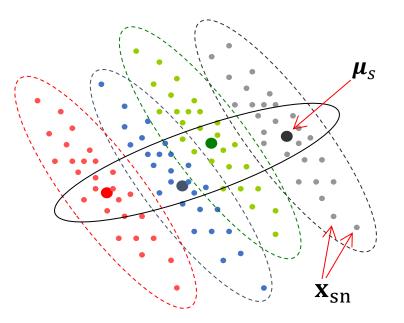


VBx Diarization

- Clustering embeddings using VB inference for Bayesian HMM
 - Federico Landini, Ján Profant, Mireia Diez, Lukáš Burget, "Bayesian HMM clustering of x-vector sequences (VBx) in speaker diarization: Theory, implementation and analysis on standard tasks", Computer Speech & Language, Volume 71, 2022, 101254, ISSN 0885-2308, <u>https://doi.org/10.1016/j.csl.2021.101254</u>.
 - Here we consider simplified version using only GMM, which is anyway used in practice
- Uses PLDA trained on x-vectors to model:

 $p(\boldsymbol{\mu}_{s}) = \boldsymbol{\mathcal{N}}(\boldsymbol{\mu}_{s} | \boldsymbol{\mu}, \boldsymbol{\Sigma}_{ac}) - \text{distribution of speaker means}$ $p(\mathbf{x} | \boldsymbol{\mu}_{s}) = \boldsymbol{\mathcal{N}}(\mathbf{x} | \boldsymbol{\mu}_{s}, \boldsymbol{\Sigma}_{wc}) - \text{within speaker (channel) variability}$

- If the x-vectors from a single conversation of several speakers follows the PLDA model, they can be assumed to be distributed according to Bayesian GMM model where:
 - Means of the components follows prior distribution $p(\mu_s)$
 - Speaker specific distributions are $(\mathbf{x}|\boldsymbol{\mu}_s)$
 - Weights π determine how much is the speaker speaking



VBx Diarization

- We assume that the observed x-vectors in each conversation were generated as follows:
 - For each speaker $s = 1 \dots S$, mean of the speaker specific distribution was generated as
 - $\boldsymbol{\mu}_{s} \sim \mathcal{N}(\boldsymbol{\mu}_{s} | \boldsymbol{\mu}, \boldsymbol{\Sigma}_{ac})$
 - For each x-vector $n = 1 \dots N$
 - $z_n \sim P(z_n | \boldsymbol{\pi}) = Cat(z_n | \boldsymbol{\pi})$
 - $\mathbf{x}_n \sim p(\mathbf{x}_n | z_n, \{ \boldsymbol{\mu}_s \}) = \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_{z_n}, \boldsymbol{\Sigma}_{wc})$
 - Given the "observed" x-vector sequence $\mathbf{x} = [x_1, x_2, ..., x_N]$, the task is to infer (the distribution over) $\mathbf{z} = [z_1, z_2, ..., z_N]$, which defines assignment of x-vectors (speech frames) to Gaussian components (speaker clusters).
 - Variational Bayes inference is used for this purpose as shown before for BHM
 - Component weights π are not treated as latent variables but learned using as point estimates to maximize ELBO.
 - The weights of the "redundant" components converge to $0 \Rightarrow$ It automatically determines the number of speaker in the conversation

