RMI and JMS
Jaroslav Dytrych

Faculty of Information Technology Brno University of Technology
BoZetéchova 1/2. 612 66 Brno - Krdlovo Pole

dytrych@fit.vutbr.cz

BRNO | FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY A TECHNOLOGY

7 October 2020

| Content I

* RMI (Remote Method Invocation)
¢ JMS (Java Message Service)

cas | 2/4

RMI (Remote Method Invocation)

| RMI

° RMI

| KRG

Remote method invocation

Distributed Java

TCP/IP transport layer

Allow code that defines behavior and code that implements
behavior to remain separate and to run on separate JVMs
Part of JDK since Java 1.1

Code running on one JVM may call method on other JVM
Client/Server architecture

cas |

%

4/42

| RMI protocols | KRG

e RMI uses a protocol called Java Remote Method Protocol
* JRMP is proprietary
e Forincreased interoperability RMI later used the Intfernet
Inter-ORB Protocol (IlOP)
¢ |IOP is CORBA’s communication protocol using TCP/IP as the
transport. CORBA is Common Object Request Broker
Architecture
language neutral protocol
standard way to make method calls fo remote objects
PortableRemoteObject instead of UnicastRemoteObject
—-iiop parameter of the rmic compiler
In JDK 11, the Java EE and CORBA modules were removed.
These modules were deprecated for removal in JDK 9.

e RMlis all about remote calls at runtime.
e [t's not about compilation against a remote claoss.

cas | 542

| RMI architecture |

A
/' Client Host Server Host \

[Server Object Interface] [SENET Object Interface]
(4) Data ‘
Client Server Communication Server Server
Program Stub Skeleton Object

(1) Register server object

/
(3) Return serverstub RMI Registry Host J

RMI
(2) Look for server object N Registry

cas | 64

| RMI features |

A

« Simplifies communication with remote applications
¢ local method calls

e Supports security
* on both server and client side

o RMI layers
« Stub
client side
creates marshall stream from client requests
demarshalling server response
object references are accessible via stub
» Skeleton
° server side
¢ transforms marshall stream to method call

cnas | 74

| RMI principles | G

RMI uses proxy design pattern A
* An object in one context is represented by another
(the stub) in a separate context.
e The stub knows how to forward method calls between the
parficipating objects.
¢ A naming or directory service is run on a well-known host
and port number
» usually port 1099
RMI includes RMI registry
¢ which is actually a naming service
* may be created directly in java or by “rmiregistry”
program available in JDK
Stubs and skeletons are generated
« Static stubs and skeletons can be created by rmic program
* Deprecated
» Skeletons and stubs should be generated dynamically

* 5ways, e.g. subclassing UnicastRemoteObject and calling it’s
constructor (super ()).

cas | 84

| RMI Registry |

* The RMI registry is a simple server-side bootstrap naming
facility that enables remote clients to obtain a reference to
an initial remote object.

¢ |t can be started with the rmiregistry command which
produces no output and is typically run in the background.

» Before you execute rmiregistry, you must make sure that
the shell in which you will run rmiregistry either has no
CLASSPATH environment variable set or has a CLASSPATH
that does not include the path to any classes that you want
downloaded to clients of your remote objects.

e From JDK 7 Update 21, the RMI property
java.rmi.server.useCodebaseOnly is set to tfrue by
default. When set to false, it allows one side of an RMI
connection to specify a network location (URL) from which
the other side should load Java classes. If it is set to true,
classes are loaded only from preconfigured locations, such
as the locally-specified java.rmi.server.codebase
property or the local CLASSPATH, and not fromn codebase
information passed through the RMI request stream.

cas | 94

| RMI naming N°r[FIT

e Naming static class

Bind // binds the specified name to a remote object

List // returns an array of the names bound in the registry
Lookup // returns a reference, a stub, for the remote object
Rebind // rebinds the specified name to a new remote
object

* Unbind // destroys the binding for the specified name

* LocateRegistry static class

* may create new registry
* naming methods are available

® UnicastRemoteObject

» also static class, which can export any object to be
accessible on registry
e Extend it or use exportObject (Remote, PORT)

cas | 10742

| Server implementation |

* Shared proxy object

public interface Message extends Remote {
int add(int a, int b) throws RemoteException;

» Shared proxy must be implemented

public class MessageImpl extends UnicastRemoteObject
implements Message {

public MessageImpl () throws RemoteException {

}

@Override
public int add(int a,int b) throws RemoteException {
return a+b;

}
* Registry is created (if not already running)

Registry registry = LocateRegistry.createRegistry(1099);

« Service is bind to given name

// create a new service named myMessage
registry.rebind ("myMessage", new MessageImpl ());

cas | /a2

| Client implementation |

* Shared proxy object

public interface Message extends Remote {
int add(int a, int b) throws RemoteException;

* Remote call

Registry myRegistry =
LocateRegistry.getRegistry ("127.0.0.1", 1099);

Message impl = (Message) myRegistry.lookup ("myMessage");
System.out.println (impl.add (3, 5));

cas | 12/42

| Server callback |

%

With RMI also server may initiate communication
Communication object must implement proxy (which
extends java.rmi.Remote)

» This object then may be referenced via stub
Object export via UnicastRemoteObject

e Another JVM is running — use different port
® UnicastRemoteObject.exportObject (Remote, PORT)

Asynchronous messages
* server is the origin of communication

cas | 13/42

| RMI security | KRG

e SSL or any other mechanism may be used
¢ Initialize security manager

* System.setSecurityManager (new
RMISecurityManager ());

* Applets typically run in a container that already has
a security manager, so there is generally no need for applets
to set a security manager.

e By default, the RMISecurityManager restricts all code in
the program from establishing network connections.

* Naming doesn’t work by default (creating registry manually
approach does)
java -Djava.security.manager -Djava.security.policy=
policy-file MyClass
grant
{
permission java.net.SocketPermission
"%:1024-65535", "connect";
}

cia3 | 1a/a2

| SecurityManager

e Package javax.security.manager
« |Individual for every application
» Restricts what stubs can do

® resolve
® accept
® connect
e listen

¢ Host can be defined by following way

host = (hostname | IPv4address | iPv6reference)

| MR

[:portrange]
portrange = portnumber | -—-portnumber | portnumber-[portnumber]

GJA 3

15/42

| References

° RMI

http://docs.oracle.com/javase/tutorial/rmi/
http://docs.oracle.com/Jjavase/7/docs/technotes/
guides/rmi/enhancements-7.html
https://docs.oracle.com/javase/8/docs/api/java/
rmi/server/UnicastRemoteObject.html
https://docs.oracle.com/en/java/javase/15/docs/
specs/rmi/index.html
https://docs.oracle.com/en/Jjava/javase/11/
migrate/index.html

https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/en/java/javase/15/docs/
api/index.html

GJA 3

| MR

16/42

http://docs.oracle.com/javase/tutorial/rmi/
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html
https://docs.oracle.com/javase/8/docs/api/java/rmi/server/UnicastRemoteObject.html
https://docs.oracle.com/javase/8/docs/api/java/rmi/server/UnicastRemoteObject.html
https://docs.oracle.com/en/java/javase/15/docs/specs/rmi/index.html
https://docs.oracle.com/en/java/javase/15/docs/specs/rmi/index.html
https://docs.oracle.com/en/java/javase/11/migrate/index.html
https://docs.oracle.com/en/java/javase/11/migrate/index.html
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/en/java/javase/15/docs/api/index.html
https://docs.oracle.com/en/java/javase/15/docs/api/index.html

JMS (Java Message Service)

| JIMS

* JMS

Java Message Service

asynchronous message exchange between Java
applications

JMS implementations are called JMS providers.
Different providers are not interoperable.

Reliable delivery.

e Providers

Open Message Queue (Part of GlassFish)
JBossMQ / JBossMessaging (Red Hat)
WebSphere MQ (IBM)

ActiveMQ (Apache project)

RabbitMQ (Pivotal Soffware)

ZeroMQ (iMatix Corporation)

GJA3

| KRG
®

18/42

| Messaging domains | EGEH

- P2P A

* Point o point domain

¢ Each message has only one consumer.

¢ No timing (client 1 may send a message before client 2
is started, and yet message will be delivered).

* Each queue may have more senders.

Only one receiver can process the message (only once).

L]
Mesie

cas | 19742

Mesie

| Messaging domains | EGEH

« PubSub A
» Publish-Subscribe domain

* Multiple publishers/subscribers
* Weak timing (no messages delivered before subscription)
* Durable subscriptions available (survive reboot)

Message

cAs | 20742

| JMS architecture | KRG

« JMS is an interface specification
* Providers implement queues and topics
e Heavy use of JNDI (Java Naming and Directory Interface)

* Connection factories (Topic or Queue factory)
* Destinations (channels of communication)

JNDI

Interfaces ﬁ

" IMS
Interface

cas | 2174

| JMS programing model | KRG

cAs | 274

| JIMS programming model | G

A

* Connection factory
» managed by JMS provider
e TopicFactory
® QueueFactory
Destfination
¢ also managed by JMS provider
e Topic and Queue channels (and interfaces)
» configured on application server (not in application)
» Topic
* Many to many (PubSub)
* Queue
* Many to one (P2P)
* When message is refrieved, it is deleted from the queue.

cAs | 23742

| JIMS model | G

e Session

e context to deliver and consume message
» created from connections (factories)
« lifecycle start and end defined

« Consumer and Producer

* created by sessions
» Session exists for each producer and consumer.

GAs | 24/42

| JIMS messages

* MapMessage
» for sending of key-value pairs
* also sending of objects

MessageProducer producer =

colors.add ("red");
colors.add("green");
colors.add ("white");

m.setObject ("colours", colors);

Producer.send(m) ;

o Consumer receives MapMessage Object

o Getfters
* getInt ("keyl")
°® getString("key2")
* getObject ("key3")
* getMapNames ()

| KRG
®

session.createProducer (queue) ;
MapMessage m = session.createMapMessage () ;
m.setIntProperty ("Id", 987654321);

m.setStringProperty ("name",
m.setDoubleProperty ("price",
List<String> colors = new ArrayList<String>();

cAs | 25742

| JIMS messages | KRG

* TextMessage

* simple string messages

queueConnectionFactory = (QueueConnectionFactory)

jndiContext.lookup ("QueueConnectionFactory");
queue = (Queue) jndiContext.lookup ("myQueue");
queueConnection =

queueConnectionFactory.createQueueConnection () ;
queueSession = queueConnection.createQueueSession (false,
Session.AUTO_ACKNOWLEDGE) ;
QueueSender queueSender = queueSession.createSender (queue) ;
TextMessage textMessage = queueSession.createTextMessage();
textMessage.setText ("My message");
queueSender.send (textMessage) ;

* Receiver

queueReceiver = queueSession.createReceiver (queue) ;
textMessage = (TextMessage) queueReceiver.receive();
String message = textMessage.getText ();

GAs | 20/42

| JIMS messages

* ObjectMessage

used to send serializable objects
setObject (Serializable Object)
getObject ()

® StreamMessage

for sending of binary primitives

getABC, setABC

where ABC is primitive java type (Integer, String,...)
It is possible to read different type than was written
(conversion table exists).

null can be dangerous

* Readis freated as calling the primitive’s corresponding
valueOf (String) with a null value.
e char does not support a String conversion, attempting to read

anull value as a char must throw a NullPointerException.

cas |

| MR

%

27 /42

| JIMS messages | EGH

* BytesMessage

« contains stream of uninterpreted bytes
* based on DataInputStream dNd DataOutputStream
¢ binary data
* Methods - corresponding read/write calls
® writeDouble
writeBytes
writeUTF
readDouble
readBytes
readUTF

cAs | 28/42

| JNDI | ERGH
N

+ Java Naming and Directory Interface
JMS is tightly coupled to JNDI
Provider

* Queue name lookups

¢ an instance implementing the JNDI interface specification
and services name lookups.

* returns answers to name lookup requests.

Initial context

» starting point for name lookups
« Different providers need to be parametrized with different
properties.

cia3 | 29/4

| JNDI | ERGH

* Association
» associate name with object (create binding)
e Find
* |locate object specified by the name
Context

» set of bindings to object names
e similar fo e. g. filesystem

¢ Naming system
* set of connected contexts
o LDAP (Lightweight Directory Access Protocol)

* Namespace

¢ all names in naming system
» for example all DNS names

cia3 | s0/42

| JNDI architecture | KRG

Defines only interface for client accesses @
Common API for service providers

JNDI SPI (service provider interface) allows to use different
naming service providers

« Custom naming service may be developed by

implementing JNDI SPI

Naming Manager

(

L

JNDI
Implementation

$38888

cas | 31742

| JNDI services I

e Access to directory services through common API
o Directories are structured tfrees of informations
» Directory services

LDAP (Lightweight Directory Access Protocol)
DNS

NIS (Network Information Service) (Oracle)
Microsoft Active Directory

IBM Lotus Notes/Domino

cAs | 32742

| Message consumptions |

A

* Asynchronous

¢ A client can register a message listener with a consumer.

* Whenever a message arrives at the destination, the JMS
provider delivers the message by calling the listener’s
onMessage () method.

e Synchronous

e A subscriber or a receiver explicitly fetches the message from
the destination by calling the receive method.

e The receive method can block until a message arrives or
can time out if a message does not arrive within a specified
time limit.

cia3 | s3/42

| JMS features |

* Additional features turned off by default
* Message acknowledgement

¢ Message priorities

* Persistent delivery mode

e Control of message expiration

» Durable subscriptions

¢ Message fransactions

GAs | 3442

| Message acknowledgements I

¢ In non-transacted sessions A
» client receives the message
* message is processed
¢ acknowledgement is sent

¢ Acknowledgement modes
¢ Auto-acknowledgement
* An acknowledgement is sent after a successful return from
receive function, or when listener successfully returns.
® Session.AUTO-ACKNOWLEDGE
¢ Client acknowledgement
e Explicit call of message’s acknowledge method.
® Session.CLIENT_ACKNOWLEDGE
¢ Lazy client acknowledgement
¢ reduces JMS overhead
¢ acknowledgment each time it has received a fixed number of
messages, or when a fixed time interval has elapsed since the
last acknowledgment (10 messages and 7 seconds)
¢ Broker does not acknowledge receipt of the client
acknowledgment.
¢ You have no way to confirm that your acknowledgment has
been received; if it is lost in transmission, the broker may
redeliver the same message more than once, so duplicates
may OCCur.
® Session.DUPS_OK_ACKNOWLEDGE

cAs | 35742

| Persistent delivery mode | KL

» Persistent delivery mode

e default mode

* A message sent with this delivery mode is logged to stable
storage when it is sent.

* Messages can survive provider crashes.

* Persistent delivery needs more performance.

¢ Persistent delivery needs more storage.

* Non persistent delivery mode

« does not require the JMS provider to store the message or
otherwise guarantee that it is not lost if the provider fails

* may improve performance, but you should use it only if your
application can afford o miss messages.

¢ Can be enabled using:
producer.setDeliveryMode (DeliveryMode .NON_PERSISTENT) ;

cAs | s6/42

| Priorities, expirations |

%

e Priorities
¢ 10 levels
0 - lowest priority
4 — default priority
9 — highest priority
Queues and Topics may grow big
producer.setPriority (7);
* Expiration
* By default, messages never expire.
e Expiration may be useful when using priorities.
* TTL may be set to every message in milliseconds.
* producer.setTimeToLive (10000) ;

® topicPublisher.publish (message,

DeliveryMode.NON_PERSISTENT, 8, 10000);

cAs | s7/42

| Durable subscriptions, transactions | G

o Default subscriptions are non-persistent ()\
* After each reboot the receiver must subscribe again.
* Messages that arrived during the reboot will not be delivered.
* Durable subscriptions are persistent
* After reboot the receiver do not need to subscribe again.
* Messages that arrived during reboot will be delivered after
a new session is created.
e Subscription is not session
¢ In first case, messages M3 And M4 are not delivered.
¢ In second case, messages M2, M4, M5 are received when
user starts new session.

csession 1 opmmen] [ombnd Coemion] Lomind

Create

cAs | 38/

| Transactions |

-~ -

¢ Transactions allows grouping of operations into an atomic 'Q/
unit of work.

e During rollback all produced messages are destroyed,
consumed messages are recovered.

« Commit means that all messages are sent and consumed
messages acknowledged.

» Transactions cannot be combined with request-reply
mechanism.

j—

cAs | s9/42

| Transactions I
* Rollback
* After rollback, all “buffered” messages are destroyed.

e Commit
o Affer commit, messages begins to be retrieved.

el]
]] | fr>—
]]
]] st

e
]) s >
EEE

il ki

[io] —
ciA3 | a0/42

| References |

* JMS Concepts

e https://docs.oracle.com/javaee/7/tutorial/
jms—concepts.htm

e JMS Examples

e https://docs.oracle.com/javaee/7/tutorial/
Jms—-examples.htm

o Tutorial

® https://www.javatpoint.com/jms-tutorial

cas | a4

https://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm
https://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm
https://docs.oracle.com/javaee/7/tutorial/jms-examples.htm
https://docs.oracle.com/javaee/7/tutorial/jms-examples.htm
https://www.javatpoint.com/jms-tutorial

Thank you for your attention!

