
RMI and JMS
Jaroslav Dytrych

Faculty of Information Technology Brno University of Technology
Božetěchova 1/2. 612 66 Brno - Královo Pole

dytrych@fit.vutbr.cz

7 October 2020

Content

• RMI (Remote Method Invocation)
• JMS (Java Message Service)

GJA 3 2 / 42

RMI (Remote Method Invocation)

RMI

• RMI
• Remote method invocation
• Distributed Java
• TCP/IP transport layer
• Allow code that defines behavior and code that implements

behavior to remain separate and to run on separate JVMs
• Part of JDK since Java 1.1
• Code running on one JVM may call method on other JVM
• Client/Server architecture

GJA 3 4 / 42

RMI protocols

• RMI uses a protocol called Java Remote Method Protocol
• JRMP is proprietary

• For increased interoperability RMI later used the Internet
Inter-ORB Protocol (IIOP)

• IIOP is CORBA’s communication protocol using TCP/IP as the
transport. CORBA is Common Object Request Broker
Architecture

• language neutral protocol
• standard way to make method calls to remote objects
• PortableRemoteObject instead of UnicastRemoteObject
• -iiop parameter of the rmic compiler
• In JDK 11, the Java EE and CORBA modules were removed.

These modules were deprecated for removal in JDK 9.
• RMI is all about remote calls at runtime.

• It’s not about compilation against a remote class.

GJA 3 5 / 42

RMI architecture

GJA 3 6 / 42

RMI features

• Simplifies communication with remote applications
• local method calls

• Supports security
• on both server and client side

• RMI layers
• Stub

• client side
• creates marshall stream from client requests
• demarshalling server response
• object references are accessible via stub

• Skeleton
• server side
• transforms marshall stream to method call

GJA 3 7 / 42

RMI principles

• RMI uses proxy design pattern
• An object in one context is represented by another

(the stub) in a separate context.
• The stub knows how to forward method calls between the

participating objects.
• A naming or directory service is run on a well-known host

and port number
• usually port 1099

• RMI includes RMI registry
• which is actually a naming service
• may be created directly in java or by “rmiregistry”

program available in JDK
• Stubs and skeletons are generated

• Static stubs and skeletons can be created by rmic program
• Deprecated

• Skeletons and stubs should be generated dynamically
• 5 ways, e.g. subclassing UnicastRemoteObject and calling it’s

constructor (super()).

GJA 3 8 / 42

RMI Registry
• The RMI registry is a simple server-side bootstrap naming

facility that enables remote clients to obtain a reference to
an initial remote object.

• It can be started with the rmiregistry command which
produces no output and is typically run in the background.

• Before you execute rmiregistry, you must make sure that
the shell in which you will run rmiregistry either has no
CLASSPATH environment variable set or has a CLASSPATH
that does not include the path to any classes that you want
downloaded to clients of your remote objects.

• From JDK 7 Update 21, the RMI property
java.rmi.server.useCodebaseOnly is set to true by
default. When set to false, it allows one side of an RMI
connection to specify a network location (URL) from which
the other side should load Java classes. If it is set to true,
classes are loaded only from preconfigured locations, such
as the locally-specified java.rmi.server.codebase
property or the local CLASSPATH, and not from codebase
information passed through the RMI request stream.

GJA 3 9 / 42

RMI naming

• Naming static class
• Bind // binds the specified name to a remote object
• List // returns an array of the names bound in the registry
• Lookup // returns a reference, a stub, for the remote object
• Rebind // rebinds the specified name to a new remote

object
• Unbind // destroys the binding for the specified name

• LocateRegistry static class
• may create new registry
• naming methods are available

• UnicastRemoteObject
• also static class, which can export any object to be

accessible on registry
• Extend it or use exportObject(Remote, PORT)

GJA 3 10 / 42

Server implementation

• Shared proxy object
public interface Message extends Remote {

int add(int a, int b) throws RemoteException;
}

• Shared proxy must be implemented
public class MessageImpl extends UnicastRemoteObject

implements Message {

public MessageImpl() throws RemoteException {
}
@Override
public int add(int a,int b) throws RemoteException {

return a+b;
}

}

• Registry is created (if not already running)
Registry registry = LocateRegistry.createRegistry(1099);

• Service is bind to given name
// create a new service named myMessage
registry.rebind("myMessage", new MessageImpl());

GJA 3 11 / 42

Client implementation

• Shared proxy object
public interface Message extends Remote {

int add(int a, int b) throws RemoteException;
}

• Remote call
Registry myRegistry =

LocateRegistry.getRegistry("127.0.0.1", 1099);

Message impl = (Message) myRegistry.lookup("myMessage");
System.out.println(impl.add(3, 5));

GJA 3 12 / 42

Server callback

• With RMI also server may initiate communication
• Communication object must implement proxy (which

extends java.rmi.Remote)
• This object then may be referenced via stub

• Object export via UnicastRemoteObject
• Another JVM is running → use different port
• UnicastRemoteObject.exportObject(Remote,PORT)

• Asynchronous messages
• server is the origin of communication

GJA 3 13 / 42

RMI security

• SSL or any other mechanism may be used
• Initialize security manager

• System.setSecurityManager(new
RMISecurityManager());

• Applets typically run in a container that already has
a security manager, so there is generally no need for applets
to set a security manager.

• By default, the RMISecurityManager restricts all code in
the program from establishing network connections.

• Naming doesn’t work by default (creating registry manually
approach does)
java -Djava.security.manager -Djava.security.policy=
policy-file MyClass
grant
{

permission java.net.SocketPermission
"*:1024-65535", "connect";

}

GJA 3 14 / 42

SecurityManager

• Package javax.security.manager

• Individual for every application
• Restricts what stubs can do

• resolve
• accept
• connect
• listen

• Host can be defined by following way
host = (hostname | IPv4address | iPv6reference) [:portrange]
portrange = portnumber | -portnumber | portnumber-[portnumber]

GJA 3 15 / 42

References

• RMI
• http://docs.oracle.com/javase/tutorial/rmi/
• http://docs.oracle.com/javase/7/docs/technotes/
guides/rmi/enhancements-7.html

• https://docs.oracle.com/javase/8/docs/api/java/
rmi/server/UnicastRemoteObject.html

• https://docs.oracle.com/en/java/javase/15/docs/
specs/rmi/index.html

• https://docs.oracle.com/en/java/javase/11/
migrate/index.html

• API
• https://docs.oracle.com/javase/8/docs/api/
• https://docs.oracle.com/en/java/javase/15/docs/
api/index.html

GJA 3 16 / 42

http://docs.oracle.com/javase/tutorial/rmi/
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html
https://docs.oracle.com/javase/8/docs/api/java/rmi/server/UnicastRemoteObject.html
https://docs.oracle.com/javase/8/docs/api/java/rmi/server/UnicastRemoteObject.html
https://docs.oracle.com/en/java/javase/15/docs/specs/rmi/index.html
https://docs.oracle.com/en/java/javase/15/docs/specs/rmi/index.html
https://docs.oracle.com/en/java/javase/11/migrate/index.html
https://docs.oracle.com/en/java/javase/11/migrate/index.html
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/en/java/javase/15/docs/api/index.html
https://docs.oracle.com/en/java/javase/15/docs/api/index.html

JMS (Java Message Service)

JMS

• JMS
• Java Message Service
• asynchronous message exchange between Java

applications
• JMS implementations are called JMS providers.
• Different providers are not interoperable.
• Reliable delivery.

• Providers
• Open Message Queue (Part of GlassFish)
• JBossMQ / JBossMessaging (Red Hat)
• WebSphere MQ (IBM)
• ActiveMQ (Apache project)
• RabbitMQ (Pivotal Software)
• ZeroMQ (iMatix Corporation)

GJA 3 18 / 42

Messaging domains

• P2P
• Point to point domain
• Each message has only one consumer.
• No timing (client 1 may send a message before client 2

is started, and yet message will be delivered).
• Each queue may have more senders.
• Only one receiver can process the message (only once).

GJA 3 19 / 42

Messaging domains
• PubSub

• Publish-Subscribe domain
• Multiple publishers/subscribers
• Weak timing (no messages delivered before subscription)
• Durable subscriptions available (survive reboot)

GJA 3 20 / 42

JMS architecture

• JMS is an interface specification
• Providers implement queues and topics

• Heavy use of JNDI (Java Naming and Directory Interface)
• Connection factories (Topic or Queue factory)
• Destinations (channels of communication)

GJA 3 21 / 42

JMS programing model

GJA 3 22 / 42

JMS programming model

• Connection factory
• managed by JMS provider
• TopicFactory
• QueueFactory

• Destination
• also managed by JMS provider
• Topic and Queue channels (and interfaces)
• configured on application server (not in application)

• Topic
• Many to many (PubSub)

• Queue
• Many to one (P2P)
• When message is retrieved, it is deleted from the queue.

GJA 3 23 / 42

JMS model

• Session
• context to deliver and consume message
• created from connections (factories)
• lifecycle start and end defined

• Consumer and Producer
• created by sessions
• Session exists for each producer and consumer.

GJA 3 24 / 42

JMS messages

• MapMessage
• for sending of key-value pairs
• also sending of objects

MessageProducer producer = session.createProducer(queue);
MapMessage m = session.createMapMessage();
m.setIntProperty("Id", 987654321);
m.setStringProperty("name", "Widget");
m.setDoubleProperty("price", 0.99);
List<String> colors = new ArrayList<String>();
colors.add("red");
colors.add("green");
colors.add("white");
m.setObject("colours", colors);
Producer.send(m);

• Consumer receives MapMessage Object
• Getters

• getInt("key1")
• getString("key2")
• getObject("key3")
• getMapNames()

GJA 3 25 / 42

JMS messages

• TextMessage

• simple string messages
queueConnectionFactory = (QueueConnectionFactory)

jndiContext.lookup("QueueConnectionFactory");
queue = (Queue) jndiContext.lookup("myQueue");
queueConnection =

queueConnectionFactory.createQueueConnection();
queueSession = queueConnection.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
QueueSender queueSender = queueSession.createSender(queue);
TextMessage textMessage = queueSession.createTextMessage();
textMessage.setText("My message");
queueSender.send(textMessage);

• Receiver
queueReceiver = queueSession.createReceiver(queue);
textMessage = (TextMessage) queueReceiver.receive();
String message = textMessage.getText();

GJA 3 26 / 42

JMS messages

• ObjectMessage
• used to send serializable objects
• setObject(Serializable Object)
• getObject()

• StreamMessage
• for sending of binary primitives
• getABC, setABC
• where ABC is primitive java type (Integer, String, . . .)
• It is possible to read different type than was written

(conversion table exists).
• null can be dangerous

• Read is treated as calling the primitive’s corresponding
valueOf(String) with a null value.

• char does not support a String conversion, attempting to read
a null value as a char must throw a NullPointerException.

GJA 3 27 / 42

JMS messages

• BytesMessage
• contains stream of uninterpreted bytes
• based on DataInputStream and DataOutputStream
• binary data
• Methods – corresponding read/write calls

• writeDouble
• writeBytes
• writeUTF
• readDouble
• readBytes
• readUTF
• . . .

GJA 3 28 / 42

JNDI

• Java Naming and Directory Interface
• JMS is tightly coupled to JNDI
• Provider

• Queue name lookups
• an instance implementing the JNDI interface specification

and services name lookups.
• returns answers to name lookup requests.

• Initial context
• starting point for name lookups
• Different providers need to be parametrized with different

properties.

GJA 3 29 / 42

JNDI

• Association
• associate name with object (create binding)

• Find
• locate object specified by the name

• Context
• set of bindings to object names
• similar to e. g. filesystem

• Naming system
• set of connected contexts
• LDAP (Lightweight Directory Access Protocol)

• Namespace
• all names in naming system
• for example all DNS names

GJA 3 30 / 42

JNDI architecture
• Defines only interface for client accesses
• Common API for service providers
• JNDI SPI (service provider interface) allows to use different

naming service providers
• Custom naming service may be developed by

implementing JNDI SPI

GJA 3 31 / 42

JNDI services

• Access to directory services through common API
• Directories are structured trees of informations
• Directory services

• LDAP (Lightweight Directory Access Protocol)
• DNS
• NIS (Network Information Service) (Oracle)
• Microsoft Active Directory
• IBM Lotus Notes/Domino

GJA 3 32 / 42

Message consumptions

• Asynchronous
• A client can register a message listener with a consumer.
• Whenever a message arrives at the destination, the JMS

provider delivers the message by calling the listener’s
onMessage() method.

• Synchronous
• A subscriber or a receiver explicitly fetches the message from

the destination by calling the receive method.
• The receive method can block until a message arrives or

can time out if a message does not arrive within a specified
time limit.

GJA 3 33 / 42

JMS features

• Additional features turned off by default
• Message acknowledgement
• Message priorities
• Persistent delivery mode
• Control of message expiration
• Durable subscriptions
• Message transactions

GJA 3 34 / 42

Message acknowledgements
• In non-transacted sessions

• client receives the message
• message is processed
• acknowledgement is sent

• Acknowledgement modes
• Auto-acknowledgement

• An acknowledgement is sent after a successful return from
receive function, or when listener successfully returns.

• Session.AUTO ACKNOWLEDGE
• Client acknowledgement

• Explicit call of message’s acknowledge method.
• Session.CLIENT ACKNOWLEDGE

• Lazy client acknowledgement
• reduces JMS overhead
• acknowledgment each time it has received a fixed number of

messages, or when a fixed time interval has elapsed since the
last acknowledgment (10 messages and 7 seconds)

• Broker does not acknowledge receipt of the client
acknowledgment.

• You have no way to confirm that your acknowledgment has
been received; if it is lost in transmission, the broker may
redeliver the same message more than once, so duplicates
may occur.

• Session.DUPS OK ACKNOWLEDGE
GJA 3 35 / 42

Persistent delivery mode

• Persistent delivery mode
• default mode
• A message sent with this delivery mode is logged to stable

storage when it is sent.
• Messages can survive provider crashes.
• Persistent delivery needs more performance.
• Persistent delivery needs more storage.

• Non persistent delivery mode
• does not require the JMS provider to store the message or

otherwise guarantee that it is not lost if the provider fails
• may improve performance, but you should use it only if your

application can afford to miss messages.
• Can be enabled using:
producer.setDeliveryMode(DeliveryMode.NON PERSISTENT);

GJA 3 36 / 42

Priorities, expirations

• Priorities
• 10 levels
• 0 – lowest priority
• 4 – default priority
• 9 – highest priority
• Queues and Topics may grow big
• producer.setPriority(7);

• Expiration
• By default, messages never expire.
• Expiration may be useful when using priorities.
• TTL may be set to every message in milliseconds.
• producer.setTimeToLive(10000);

• topicPublisher.publish(message,

DeliveryMode.NON PERSISTENT, 8, 10000);

GJA 3 37 / 42

Durable subscriptions, transactions
• Default subscriptions are non-persistent

• After each reboot the receiver must subscribe again.
• Messages that arrived during the reboot will not be delivered.

• Durable subscriptions are persistent
• After reboot the receiver do not need to subscribe again.
• Messages that arrived during reboot will be delivered after

a new session is created.
• Subscription is not session

• In first case, messages M3 And M4 are not delivered.
• In second case, messages M2, M4, M5 are received when

user starts new session.

GJA 3 38 / 42

Transactions

• Transactions allows grouping of operations into an atomic
unit of work.

• During rollback all produced messages are destroyed,
consumed messages are recovered.

• Commit means that all messages are sent and consumed
messages acknowledged.

• Transactions cannot be combined with request-reply
mechanism.

GJA 3 39 / 42

Transactions
• Rollback

• After rollback, all “buffered” messages are destroyed.
• Commit

• After commit, messages begins to be retrieved.

GJA 3 40 / 42

References

• JMS Concepts
• https://docs.oracle.com/javaee/7/tutorial/
jms-concepts.htm

• JMS Examples
• https://docs.oracle.com/javaee/7/tutorial/
jms-examples.htm

• Tutorial
• https://www.javatpoint.com/jms-tutorial

GJA 3 41 / 42

https://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm
https://docs.oracle.com/javaee/7/tutorial/jms-concepts.htm
https://docs.oracle.com/javaee/7/tutorial/jms-examples.htm
https://docs.oracle.com/javaee/7/tutorial/jms-examples.htm
https://www.javatpoint.com/jms-tutorial

Thank you for your attention!

