
Digital filters
Honza Černocký, ÚPGM

Aliases

• Numerical filters

• Discrete systems

• Discrete-time systems

• etc.

2

What for ?

Processing of signals

• Emphasizing

• Attenuating

• Detecting

3

Emphasis

• Basses – low frequencies

4

Emphasis

• Trebles – high frequencies

5

Emphasis

• Telephone band 300-3400 Hz

6

Attenuating

• A signal contamined by 1kHz and its

cleaning by a sharp band-stop

7

Detection

• Couple of peaks in noise

8

Detection

• Matched filter

9

• A nice app: RICHTER Jiří. Echo-Based

Distance Measurement on Mobile Phone,

BP FIT, 2014/2015

10

What will be needed ?

• Sampled signal

– At some sampling frequency (most often

8kHz, 16kHz, 44.1kHz (CD), 48kHz, 96kHz)

• For visualization, will show it as

continuous (stem vs. plot)

• For ISS no special formats (MP3, OGG,

WAV), but a plain RAW

– No header, sequence of 16-bit shorts

… wire.c
11

What next ?

• Only 3 simple operations

– Multiplication with a constant *

– Summation (addition) +

– Shift

12

Shift ? Only to the past !

13

past

n

„now“,

„presence“

x[n]

future

Shift off-line

14

n

x[n]

n-1

x[n-1]

… just changing the value of the pointer.

Shift on-line

• We have only x[n]

• Function with a memory

float filter (float xn) {

static float xn1, xn2;

… some processing …

xn2 = xn1;

xn1 = xn;

return something;

}
15

A simple filter

y[n] = b0x[n] + b1x[n-1] + b2x[n-2] + b3x[n-3]

… difference equation

16

How does it work ?

17

Implementation off-line

• Allocation of space for the output signal.

• Then absolutely verbatim re-writing of the

difference equation

fir_offline.c

18

Implementation on-line

• A function for filtering is called for every

sample

• It must memorize the past samples

fir_online.c

19

What will it do for …

b0 b1 b2 b3

0.25 0.25 0.25 0.25

0.25 -0.25 0.25 -0.25

1 0 0 0

2 0 0 0

0 0 0 1

20

Another possible

implementation…

21

How to represent a filter ?

y[n] = b0x[n] + b1x[n-1] + b2x[n-2] + b3x[n-3]

… difference equation

… scheme
22

z-1

z-1

z-1

b0

b1

b2

b3

S
x[n] y[n]

Impulse response

• Reaction to unit impulse

23

0 0 0 0 0 1 0 0 0 0 0 0

Finite / infinite impulse

response?

24

Convolution

… demo on our filter

25

It works also the other way round

(convolution is commutative…)

… demo on our filter – homework ?

26

Convolution - summary

• Flip the impulse response

• Shift it to given „n“

• Mutliply

• Add

• Write the results

… „paper strip“ method – demo

27

Making use of filter output

• Feedback – recursive filters

28

Diference equation

y[n] = b0x[n] + b1x[n-1] + b2x[n-2] + b3x[n-3]

- a1y[n-1] - a2y[n-2] - a3y[n-3]

… why not a0 ?

… and why do the feed-back coefficients

have negative sign ?

29

Scheme

30

z-1

z-1

z-1

b0

b1

b2

b3

S
x[n] y[n]

z-1

z-1

z-1

-a1

-a2

-a3

Implementation off-line

• Digging also in the old outputs …

… iir_offline.c

31

Implementation on-line

• The function has to memorize also the

past outputs.

… iir_online.c

32

Impulse response

• For example for a simple, purely recursive

filter (nothing done with the input)

• Infinite impulse response - IIR

33

S
x[n] y[n]

z-1

-a1

Stability

• Mathematically „Bounded Input Bounded

Output“

• Popularly: “if reasonable stuff on the input

expecting reasonable stuff on the output”

34

Stability of FIR

35

Stability of IIR

36

First order IIR

• What must be respected for a1?

• And how about for more complicated IIR

filters ?

37

S
x[n] y[n]

z-1

-a1

General filter

38

General filter

• Order of input Q

• Order of output P

Difference equation

y[n] = b0x[n] + b1x[n-1] + … + bQx[n-Q]

- a1y[n-1] + … + aPy[n-P]

39

Implementation off-line

• … still the same, this time with cycles

iirbig_offline.c

40

Implementation on-line

• The cycles must run backward (otherwise

the old values rewrite the new ones)

• The cycle for the output must stop

at index 1.

• „Trash“ memory fields, that will never be

used – make things easier and save us

some „if“s.

iirbig_online.c

41

Frequency responses

• For FIR filters:

• The coefficients of the filter (resp. of its

impulse response) act as a machining

tool – the result will be similar

42

Tests

• 2s of chamber „a“ (440 Hz) plus some

noise

See the Matlab file matlab_filtry.m (section

“filcy atd”)

43

Mason’s float

• 20 equal samples valued 1/20

• Smoothing, less noise

=> Low-pass

44

Mason’s superfloat

• 181 equal samples valued 1/181

• Smoothing, less noise but almost no signal

left

=> Even more low-pass

45

Cutter with a dented edge

=> High pass
46

Band-pass ?

• We want to select 440 Hz.

• The output will resemble the impulse

response …

… listen to the result also on a speech file.

47

Frequency response more

precisely
• Currently, interested only in magnitude

• i.e. how individual frequencies are

amplified / attenuated

• … not how they are shifted

See the last part of matlab_filtry.m

48

Method 1 – measure !

49

filtr

Method 2 – use impulse

response
• Generate impulse response and perform

its frequency transform

• But the impulse response can be

loooonnnnng.

50

The ultimate solution

z-transform
Basic tools:

x[n] => X(z)

a x[n] => a X(z)

x[n-k] => X(z) z-k

51

Difference equation

=> transfer function

y[n] = b0x[n] + b1x[n-1] + … + bQx[n-Q]

- a1y[n-1] + … + aPy[n-P]

52

Transfer function => frequency

response
z => ej2pf

• f is normalized by the sampling frequency

• Will obtain a complex number, must take

only its magnitude.

• Matlab: by hand or with freqz

53

Relation of time and spectra

y[n] = x[n] * h[n] (convolution)

Y(f) = X(f) H(f) (mutliplication)

• Attention, must multiply the complex

numbers in spectra !

54

Summary

Describing the filter by

• Scheme

• Difference equation

• Impulse response

• Transfer function

• Frequency response

55

Summary II.

• Types of filters

– FIR

– IIR

• Implementation

– Mutliplication

– Summation

– Shifts

• Off-line

• On-line

56

Summary III.

• Computing the frequency response

– Ugly:

• „measurement“

• Analysis of h[n]

– Nicely

• Transfer function: replacing z by ej2pf

• f is normalized frequency

57

TODO’s

• Phase – shifts of signals

• Stability for more complex IIR filters

• Design of filters

• Learning filters on data

58

The END

59

