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Signals at school and in the real 

world
Deterministic

• Equation

• Plot

• Algorithm

• Piece of code
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Can compute

Little information !

Random

• Don’t know for sure

• All different

• Primarily for „nature“ 
and „biological“ 
signals

• Can estimate 
parameters



Examples

• Speech

• Music

• Video

• Currency exchange rates

• Technical signals (diagnostics)

• Measurements (of anything)

• … almost everything
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Mathematically

• Discrete-time only (samples)

• A system of random variables defined for 

each n

• For the moment, will look at them 

independently
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Set of realizations
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Ensemble estimates
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n

• Fix n and select all values

• Estimate – the estimate will be valid only 

for this n
7
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According to the range

• Discrete range

– Coin flipping

– Dice

– Roulette

– Bits from a communication channel

• Real range

– Strength of wind

– Audio

– CZK/EUR Exchange rate

– etc
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Discrete data

• 50 years of roulette W=50x365 realizations

• N=1000 games a day

30    34    10    14    29    35     6    35    33    30    35    30     9    11    11    13    17    22    33    21

33    23    35     0    15    15    17     8    12    23    24    24    26    12    16    21     9     7    14    18

4     4    13    28    15     9    19    29    25    35    22    36    12    34     4    17    31     7    35    15

33    34     6     3     8    29     5     2    10    26    12    32    28    31    36    26    36     5    34    35

23    17    21    28    16    28     1     2     9    36     7     3     3    36    34    28    18    33    14     3

3    34    18    29    12    26     9    23     3    12     9    15    17     0    34     1     6    35    28    24

10    36     9    17    25    30    16     9     2    10    10     9    11    17    10    25    23    23    24    25

20    10    34    12     5     8    20    10    26     9    23     2     7     4     1    30    22    13     4    15

35    19    17    27    14     2     9     4     8    24    16    14    13    13    32    21    27    30     5    33

35     0    33     4     0    33    20    10     1     9    12     0    34    32     1    18     0    11    12    35

5     5     4    13    27     4     3    33    29    13    20    15    19     6    29    12    22     3    30     4

35    13    11    30    16    28     0     1     1     4    22    27    21    17    11    28    15     8    18    28

35    28    15    35    15    35     4     5    17    36    17    30     1    32    27    26    13    17     3    22

17    11    14    15    12    33     5    31    15    28    12    35     8    22    33     3     0    25    33    31

29    20    35    19    14    26     1    31    23    14     1     2    33    17     2     0    14    24    28    13
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Continuous data

• W = 1068 realizations of flowing water

• Each realization has 20ms, Fs=16kHz, so 

that N=320. 
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Describing random signal by 

functions
• CDF (cummulative distribution function)

• x is nothing random ! It is a value, for 

which we want to determine/measure 

CDF. For example „which percentage of 

population is shorter than 165cm?“ x=165
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Estimation of probabilities of 

anything
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Estimation of CDF from data

How to divide x axis ?

• Sufficiently fine

• But not useful in case the estimate is all 

the time the same. 
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F(x,n)

x



n

14

14

How many times was the value smaller than x=165 ?

P = 4 / 10,  F(x,n) = 0.4



Estimation roulette 
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Estimation water
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Probabilities of values

• Discrete range - OK 

• The mass of probabilities is

• Estimation using the counts
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Result for roulette
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Continuous range

• Nonsense or zero …

=> Needs probability density!
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Real world examples

How many kms did the car run at 

time t ???
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What is the mass of the ferment 

here, in coordinates x,y,z ???



Velocity
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Density



Probability density 

function - PDF
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Can we estimate it more easily?
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Probabilities of values are 

nonsense, but we can use 

probabilities of intervals –

bins !



Histogram

25Bins !



Probability
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Probability density
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How about the whole thing ?

28Check this using the bins …



Joint probability or probability 

density function
• Any relations between samples in different 

times ? 

• Are they independent or is there a link ? 
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Good for ?

• Looking for dependencies

• Spectral analysis

30



Two different times…

31
n2n1



Estimations – again questions, 

now with “and”
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Somethi

ng at 

time n1

and
Somethi

ng at 

time n2



Joint counts: n1=10, n2=11
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Joint probabilities: n1=10, n2=11
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35

Joint probabilities: n1=10, n2=10
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Joint probabilities: n1=10, n2=13



Continuous range

• Probabilities will not work…

Histogram 

=> Probabilities of 2D bins

=> Probability densities in 2D bins
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Joint histogram – counts, 

n1=10, n2=11 
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2D bin



Joint probabilities of bins, 

n1=10, n2=11 
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Joint probability density function, 

n1=10, n2=11 
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Joint probability density function, 

n1=10, n2=10 

41



Joint probability density function, 

n1=10, n2=16 
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Joint probability density function, 

n1=10, n2=23 
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Moments

• Single numbers characterizing the random 
signal. 

• Still at time n

• Expectation of something

Expectation = sum all possible values of x

probability of x
times the thing that we’re expecting

Sometimes a sum, sometimes an integral. 44



Mean value

• Expectation of the value
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Mean value

– discrete range
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a[10] =  18.0422



Mean value

– continuous range

47

a[10] =  -0.0073



Variance (dispersion)

• Expectation of zero-mean value squared 

• Energy, power …
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Variance

– discrete range

49D[10] = 113.8563



Variance

– continuous range
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D[10] =0.0183



Ensemble estimates

n



You know this from elementary 

school …

a[10] = 18.0422
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D[10] = 113.8563

• Discrete range (roulette)

• n1 = 10



You know this from elementary 

school …

a[10] = -0.0069
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D[10] = 0.0183

• Continuous range (water)

• n1 = 10

… The equations are the same 



Correlation coefficient

• Expectation of product of values from two 

different times

• What does it mean when R[n1, n2] is

– Big ?

– Small or zero ?

– Big negative ? 
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Discrete range, n1=10, n1=11 
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R[10,11] = 324.2020



Discrete range, n1=10, n2=10 
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R[10,10] = 439.3770



Discrete range, n1=10, n2=13 
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R[10,13] = 326.9284



Continuous range, n1=10, n2=11 
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R[10,11] =0.0159



Continuous range, n1=10, n2=10 
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R[10,10] =0.0184



Continuous range, n1=10, n2=16 
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R[10,16] = 0.00038



Continuous range, n1=10, n2=23 
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R[10,23] = -0.0139



n2

Direct ensemble estimate

n1



Discrete range

R[10,10] = 439.3770

R[10,11] = 324.2020

R[10,13] = 326.9284
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Continuous range

R[10,10] = 0.0183

R[10,11] = 0.0160

R[10,16] = 3.8000e-04

R[10, 23] = -0.0140

The same equations again 
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Sequence of correlation 

coefficients – roulette 
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Useful 

???



Sequence of correlation 

coefficients - water
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Wow !!!



Stationarity

• The behavior of stationary random signal 

does not change over time (or at least we 

believe that it does not…)

• Values and functions independent on time n

• Correlation coefficients do not depende on 

n1 and n2, only on their difference k=n2-n1
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Is roulette stationary ?
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69



70



Is water stationary ?
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72
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Ergodicity

• The parameters can be estimated from 

one single realization 

… or at least we hope

… most of the time, we’ll have to do it 

anyway
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Temporal estimates
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Roulette

a =  18.0348

D = 114.4742

R[k]
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Water

a = -0.0035

D = 0.0168

R[k]
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Temporal estimates of joint 

probabilities ? 
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Roulette, 

k = 0
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Roulette, 

k = 1

Roulette, 

k = 3



Spectral analysis of random 

signals
• No idea on which frequencies they are

– No fundamental frequency

– No harmonics

• Phases have no sense

• The spectrum can tell us just the density of 

power at different frequencies.

=> Power spectral density, PSD
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Computing PSD from 

correlation coefficients
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Normalized 

frequency

Real frequency



PSD water

82???



Estimation of PSD directly from 

signal
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Normalized 

frequency

Real frequency



PSD estimate from signal – water
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Welch’s technique – improving 

the robustness of estimate
• Averaging over several segments of signal
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White noise

• Spectrum of white light is flat

• Power spectral density G(f) of a white 

noise should be also flat. 
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G(f)

f



Correlation coefficients of white 

noise

• How must R[k] look, so that their DFT is a 

constant ?
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R[k]

k



White noise

• Signal having only R[0] non-zero

• … has no dependencies between 

samples
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Determining PSD 

of white noise

89

???



Welch … help …
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SUMMARY

• Random signals are of high interest
– Everywhere around us

– Carry information

• Discrete vs. continuous range

• Can not precisely define them, other means 
of description
– Set of realizations

– Functions – cumulative distribution, probabilities, 
probability density 

– Scalars – moments

– Behavior between two times – correlation 
coefficients
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SUMMARY II. 

• Counts

– of an event „how many times did you see the 
water signal in interval 5 to 10?“

• Probabilities

– Estimated as count / total. 

• Probability density

– Estimated as Probability / size of interval (1D 
or 2D)

• In case we have a set of realizations –
ensemble estimates. 
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SUMMARY III.

• Stationarity – behavior not depending on 
time. 

• Ergodicity – everything can be estimated
from one relazation

– Temporal estimates

• Spectral analysis

– Power spectral density – PSD 

– From correlation coefficients

– Or directly from the signal, often improving the 
estimate by averaging. 
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SUMMARY IV

• White noise

– No dependencies of samples (uncorrelated 

samples)

– So that only R[0] is non-zero, the others zero. 

– So that DFT is constant

– White light has constant spectrum too. 
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NOT COVERED…

• Can we model generation of random signals 
? 

• What to do for temporal estimates of 
correlation coefficients – less and less 
samples to work with as k increases!

• Can we color a white noise ?

• How exactly is power spectral density 
defined?

• Can we use all this for recognition / 
classification / detection ?
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The END

96


