# Random signals

Honza Černocký, ÚPGM

# Signals at school and in the real world

#### Deterministic

- Equation
- Plot
- Algorithm
- Piece of code



#### Can **compute** Little information !

#### Random

- Don't know for sure
- All different
- Primarily for "nature" and "biological" signals
- Can estimate parameters



## Examples

- Speech
- Music
- Video
- Currency exchange rates
- Technical signals (diagnostics)
- Measurements (of anything)
- ... almost everything

# Mathematically

- Discrete-time only (samples)
- A system of random variables defined for each n
- For the moment, will look at them independently



#### Set of realizations







#### **Ensemble estimates**





# According to the range

- Discrete range  $\xi[n] \in [h_1, h_2, \dots, h_H]$ 
  - Coin flipping
  - Dice
  - Roulette
  - Bits from a communication channel
- Real range

$$\xi[n] \in \mathcal{R}$$

- Strength of wind
- Audio
- CZK/EUR Exchange rate
- etc

### Discrete data

- 50 years of roulette  $\Omega$ =50x365 realizations
- N=1000 games a day  $\xi[n] \in [h_1, h_2, \dots h_H] = [0, 1, 2, \dots, 36]$

| 30 | 34 | 10 | 14 | 29 | 35 | 6  | 35 | 33 | 30 | 35 | 30 | 9  | 11 | 11 | 13 | 17 | 22  | 33    | 21  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-------|-----|
| 33 | 23 | 35 | 0  | 15 | 15 | 17 | 8  | 12 | 23 | 24 | 24 | 26 | 12 | 16 | 21 | 9  | 7   | 14    | 18  |
| 4  | 4  | 13 | 28 | 15 | 9  | 19 | 29 | 25 | 35 | 22 | 36 | 12 | 34 | 4  | 17 | 31 | 7   | 35    | 15  |
| 33 | 34 | 6  | 3  | 8  | 29 | 5  | 2  | 10 | 26 | 12 | 32 | 28 | 31 | 36 | 26 | 36 | 5   | 34    | 35  |
| 23 | 17 | 21 | 28 | 16 | 28 | 1  | 2  | 9  | 36 | 7  | 3  | 3  | 36 | 34 | 28 | 18 | 33  | 14    | 3   |
| 3  | 34 | 18 | 29 | 12 | 26 | 9  | 23 | 3  | 12 | 9  | 15 | 17 | 0  | 34 | 1  | 6  | 35  | 28    | 24  |
| 10 | 36 | 9  | 17 | 25 | 30 | 16 | 9  | 2  | 10 | 10 | 9  | 11 | 17 | 10 | 25 | 23 | 23  | 24    | 25  |
| 20 | 10 | 34 | 12 | 5  | 8  | 20 | 10 | 26 | 9  | 23 | 2  | 7  | 4  | 1  | 30 | 22 | 13  | 4     | 15  |
| 35 | 19 | 17 | 27 | 14 | 2  | 9  | 4  | 8  | 24 | 16 | 14 | 13 | 13 | 32 | 21 | 27 | 30  | 100   | 33  |
| 35 | 0  | 33 | 4  | 0  | 33 | 20 | 10 | 1  | 9  | 12 | 0  | 34 | 32 | 1  | 18 | 0  | 11  | 12    | 35  |
| 5  | 5  | 4  | 13 | 27 | 4  | 3  | 33 | 29 | 13 | 20 | 15 | 19 | 6  | 29 | 12 | 22 |     |       | 4   |
| 35 | 13 | 11 | 30 | 16 | 28 | 0  | 1  | 1  | 4  | 22 | 27 | 21 | 17 | 11 | 28 | 15 | 1   | 0 9   |     |
| 35 | 28 | 15 | 35 | 15 | 35 | 4  | 5  | 17 | 36 | 17 | 30 | 1  | 32 | 27 | 26 | 13 | 13  | Ask . | 125 |
| 17 | 11 | 14 | 15 | 12 | 33 | 5  | 31 | 15 | 28 | 12 | 35 | 8  | 22 | 33 | 3  | 0  | 195 | 33    | SP  |
| 29 | 20 | 35 | 19 | 14 | 26 | 1  | 31 | 23 | 14 | 1  | 2  | 33 | 17 | 2  | 0  | 14 | 24  | 2     | A   |
|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |       |     |

### Continuous data

- $\Omega = 1068$  realizations of flowing water
- Each realization has 20ms, F<sub>s</sub>=16kHz, so that N=320.



# Describing random signal by functions

• CDF (cummulative distribution function)

$$F(x, n) = \mathcal{P}\{\xi[n] < x\}$$

 x is nothing random ! It is a value, for which we want to determine/measure CDF. For example "which percentage of population is shorter than 165cm?" x=165

# Estimation of probabilities of anything probability = $\frac{\text{count}}{\text{total}}$



LAJA VM HAHHHHHHHHHHH PAZ. 444 NOF. ONT HIL Tai. 29,-4 KAVA HAL HINDONES + ML. HILL MINDONES + V. M. HAHHL SER 2074 V. M. HAHHL SER 2074 Pol. HH Brain + Bul. HH Brag + Socia 0,5 +



How to divide x axis?

- Sufficiently fine
- But not useful in case the estimate is all the time the same.



How many times was the value smaller than x=165 ? P = 4 / 10, F(x,n) = 0.4

14

#### **Estimation roulette**



15

#### Estimation water



## Probabilities of values

• Discrete range - OK

$$\mathcal{P}(X_i, n)$$

The mass of probabilities is

$$\sum_{\forall i} \mathcal{P}(X_i, n) = 1$$

• Estimation using the **counts** 

$$\mathcal{P}(\hat{X_i}, n) = \frac{\operatorname{count}(X_i, n)}{\operatorname{total}[n]}$$





#### Result for roulette



#### Continuous range

 $\mathcal{P}(x,n) = ???$ 

• Nonsense or zero ...

=> Needs probability density!

### Real world examples





What is the mass of the ferment here, in coordinates *x*,*y*,*z*???





$$\rho(x, y, z) = \frac{dm}{dV} = \frac{m(x_1 \dots x_2, y_1 \dots y_2, z_1 \dots z_2)}{(x_2 - x_1)(y_2 - y_1)(z_2 - z_1)} = \frac{\Delta m}{\Delta V}$$

# Probability density function - PDF



 $p(x,n) = \frac{dF(x,n)}{dx}$ 

### Can we estimate it more easily?

$$v(t) = \frac{dl(t)}{dt} = \frac{l(t_2) - l(t_1)}{t_2 - t_1} = \frac{\Delta l}{\Delta t}$$

$$\rho(x, y, z) = \frac{dm}{dV} = \frac{m(x_1 \dots x_2, y_1 \dots y_2, z_1 \dots z_2)}{(x_2 - x_1)(y_2 - y_1)(z_2 - z_1)} = \frac{\Delta m}{\Delta V}$$



## Histogram

 $histogram(x \in interval, n) = count(x \in interval, n)$ 







### How about the whole thing ?



 $\int_{t} v(t) = ??$ 



 $\iiint_V \rho(x, y, z) = ??$ 



$$\int_{x=-\infty}^{+\infty} p(x,n) = 1$$

Check this using the bins ....28

# Joint probability or probability density function

- Any relations between samples in different times ?
- Are they independent or is there a link ?

$$\mathcal{P}(X_i, X_j, n_1, n_2)$$

$$p(x_i, x_j, n_1, n_2)$$

# Good for ?

- Looking for dependencies
- Spectral analysis

#### Two different times...



# Estimations – again questions, now with "and"



Somethi ng at time n<sub>1</sub> and Somethi ng at time  $n_2$ 

joint probability =  $\frac{\text{count that something happened simultaneously in } n_1 \text{ AND } n_2}{\text{total}}$ 

### Joint counts: $n_1=10$ , $n_2=11$



#### Joint probabilities: $n_1=10$ , $n_2=11$



#### Joint probabilities: $n_1=10$ , $n_2=10$

$$\hat{\mathcal{P}}(X_i, X_j, n_1, n_2) = \frac{\operatorname{count}(\xi[n_1] = X_i \ \mathbf{AND} \ \xi[n_2] = X_2)}{\Omega}$$



35

#### Joint probabilities: $n_1=10$ , $n_2=13$


### Continuous range

• Probabilities will not work...

Histogram => Probabilities of 2D bins => Probability densities in 2D bins

# Joint histogram – counts, $n_1=10, n_2=11$

 $histogram(x_1 \in interval_1, x_2 \in interval_2, n_1, n_2) = count(x_1 \in interval_1, n_1 \text{ AND } x_2 \in interval_2, n_2)$ 



# Joint probabilities of bins, $n_1=10, n_2=11$

 $\mathcal{P}(x_1 \in interval_1, x_2 \in interval_2, n_1, n_2) = \frac{\operatorname{count}(x_1 \in interval_1, n_1 \ \mathbf{AND} \ x_2 \in interval_2, n_2)}{\Omega}$ 



39

 $p(x_1 \in interval_1, x_2 \in interval_2, n_1, n_2) = \frac{\operatorname{count}(x_1 \in interval_1, n_1 \ \mathbf{AND} \ x_2 \in interval_2, n_2)}{\Omega[interval_1][interval_2]}$ 



40

 $p(x_1 \in interval_1, x_2 \in interval_2, n_1, n_2) = \frac{\operatorname{count}(x_1 \in interval_1, n_1 \ \mathbf{AND} \ x_2 \in interval_2, n_2)}{\Omega|interval_1||interval_2|}$ 



 $p(x_1 \in interval_1, x_2 \in interval_2, n_1, n_2) = \frac{\operatorname{count}(x_1 \in interval_1, n_1 \ \mathbf{AND} \ x_2 \in interval_2, n_2)}{\Omega|interval_1||interval_2|}$ 



42

 $p(x_1 \in interval_1, x_2 \in interval_2, n_1, n_2) = \frac{\operatorname{count}(x_1 \in interval_1, n_1 \ \mathbf{AND} \ x_2 \in interval_2, n_2)}{\Omega|interval_1||interval_2|}$ 



43

## Moments

- Single numbers characterizing the random signal.
- Still at time n
- Expectation of something

Expectation = sum <sub>all possible values of x</sub> probability of x times the thing that we're expecting

Sometimes a sum, sometimes an integral.

#### Mean value

• Expectation of the value

$$a[n] = E\{\xi[n]\}$$

## Mean value – discrete range





 $a[n] = \sum \mathcal{P}(X_i, n) X_i$ 

 $\forall X_i$ 



a[10] = 18.0422

## Mean value – continuous range







a[10] = -0.0073

 $a[n] = \int_{x} p(x, n) x dx$ 

# Variance (dispersion)

- Expectation of zero-mean value squared
- Energy, power ...

$$D[n] = E\{(\xi[n] - a[n])^2\}$$

#### D[10] = 113.8563



Variance

 $D[n] = \sum \mathcal{P}(X_i, n)(X_i - a[n])^2$ 

 $\forall X_i$ 

#### D[10] =0.0183



Variance

 $D[n] = \int_{x} p(x,n)(x-a[n])^2 dx$ 

#### **Ensemble estimates**



# You know this from elementary school ...

- Discrete range (roulette)
- n<sub>1</sub> = 10

$$\hat{a}[n] = \frac{1}{\Omega} \sum_{\omega=1}^{\Omega} \xi_{\omega}[n]$$

$$\hat{D}[n] = \frac{1}{\Omega} \sum_{\omega=1}^{\Omega} (\xi_{\omega}[n] - \hat{a}[n])^2 \quad \hat{\mathsf{D}}[\mathsf{10}] = \mathsf{113.8563}$$

# You know this from elementary school ...

- Continuous range (water)
- $n_1 = 10$

$$\hat{a}[n] = \frac{1}{\Omega} \sum_{\omega=1}^{\Omega} \xi_{\omega}[n]$$

$$\hat{D}[n] = \frac{1}{\Omega} \sum_{\omega=1}^{\Omega} (\xi_{\omega}[n] - \hat{a}[n])^2 \quad \hat{\mathsf{D}}[\mathsf{10}] = \mathsf{0.0183}$$

... The equations are the same 😳

## **Correlation coefficient**

 Expectation of product of values from two different times

$$R[n_1, n_2] = E\{\xi[n_1]\xi[n_2]\}\$$

- What does it mean when  $R[n_1, n_2]$  is
  - Big?
  - Small or zero ?
  - Big negative ?

# Discrete range, $n_1=10$ , $n_1=11$ $R[n_1, n_2] = \sum_{\forall X_1} \sum_{\forall X_2} \mathcal{P}(X_1, X_2, n_1, n_2) X_1 X_2$





 $X_{1} X_{2} P(X_{1}, X_{2}, n_{1}, n_{2})$ 



#### R[10,11] = 324.2020

# Discrete range, $n_1=10$ , $n_2=10$ $R[n_1, n_2] = \sum_{\forall X_1} \sum_{\forall X_2} \mathcal{P}(X_1, X_2, n_1, n_2) X_1 X_2$









#### R[10,10] = 439.3770

# Discrete range, $n_1=10$ , $n_2=13$ $R[n_1, n_2] = \sum_{\forall X_1} \sum_{\forall X_2} \mathcal{P}(X_1, X_2, n_1, n_2) X_1 X_2$

x 10<sup>-3</sup> 1 3

2.5

2

1.5

1

0.5





 $X_1 X_2 P(X_1, X_2, n_1, n_2)$ 



#### R[10, 13] = 326.9284

#### Continuous range, $n_1=10$ , $n_2=11$

 $R[n_1, n_2] = \int_{x_1} \int_{x_2} p(x_1, x_2, n_1, n_2) x_1 x_2 dx_1 dx_2$ 





#### R[10,11] =0.0159

#### Continuous range, $n_1=10$ , $n_2=10$

$$R[n_1, n_2] = \int_{x_1} \int_{x_2} p(x_1, x_2, n_1, n_2) x_1 x_2 dx_1 dx_2$$

0





#### R[10,10] = 0.0184

#### Continuous range, $n_1=10$ , $n_2=16$

$$R[n_1, n_2] = \int_{x_1} \int_{x_2} p(x_1, x_2, n_1, n_2) x_1 x_2 dx_1 dx_2$$



0

0



#### R[10, 16] = 0.00038

# Continuous range, $n_1=10$ , $n_2=23$ $R[n_1, n_2] = \int_{x_1} \int_{x_2} p(x_1, x_2, n_1, n_2) x_1 x_2 dx_1 dx_2$







#### R[10,23] = -0.0139

#### Direct ensemble estimate



# $\hat{R}[n_1, n_2] = \frac{1}{\Omega} \sum_{\omega=1}^{\Omega} \xi_{\omega}[n_1] \xi_{\omega}[n_2]$

#### R[10,10] = 439.3770

#### R[10,11] = 324.2020

#### R[10, 13] = 326.9284

# $\hat{R}[n_1, n_2] = \frac{1}{\Omega} \sum_{\omega=1}^{\Omega} \xi_{\omega}[n_1] \xi_{\omega}[n_2]$

```
R[10,10] = 0.0183R[10,11] = 0.0160R[10,16] = 3.8000e-04R[10,23] = -0.0140
```

#### The same equations again ③

# Sequence of correlation coefficients – roulette



# Sequence of correlation coefficients - water



## Stationarity

- The behavior of stationary random signal does not change over time (or at least we believe that it does not...)
- Values and functions independent on time n
- Correlation coefficients do not depende on  $n_1$  and  $n_2$ , only on their difference  $k=n_2-n_1$

$$F(x,n) \to F(x) \quad p(x,n) \to p(x)$$

$$a[n] \to a \quad D[n] \to D \quad \sigma[n] \to \sigma$$

$$p(x_1, x_2, n_1, n_2) \to p(x_1, x_2, k)$$

$$R[n_1, n_2] \to R(k)$$

67

#### Is roulette stationary ?







#### Is water stationary ?



p(x,n) for many ns 3.5 3 2.5 2 1.5 0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4




### Ergodicity

- The parameters can be estimated from one single realization
- ... or at least we hope
- ... most of the time, we'll have to do it anyway  $\xi[n] \Rightarrow \xi[n]$



#### **Temporal estimates**

$$\hat{a} = \frac{1}{N} \sum_{n=0}^{N-1} \xi[n] \qquad \hat{D} = \frac{1}{N} \sum_{n=0}^{N-1} [\xi[n] - \hat{a}]^2 \qquad \hat{\sigma} = \sqrt{\hat{D}}$$

$$\hat{R}[k] = \frac{1}{N} \sum_{n=0}^{N-1} \xi[n]\xi[n+k]$$

#### Roulette

#### a = 18.0348440 D = 114.4742420 400 R[k]꽃 380 360 340



k

#### Water

#### a = -0.0035D = 0.0168

R[k]



#### Temporal estimates of joint probabilities ? $\hat{\mathcal{P}}(X_i, X_j, k) = \frac{\operatorname{count}(\xi[n] = X_1 \ \text{AND} \ \xi[n+k] = X_2)}{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$

 $P(X_1, X_2, n_1, n_2)$ 35 0.03 30 0.025 25 0.02 20 0.015 15 0.01 10 0.005 5 Ω. 5 10 15 20 25 30 35

Roulette, k = 0



Roulette, k = 1 Roulette, k = 3

# Spectral analysis of random signals

- No idea on which frequencies they are
  - No fundamental frequency
  - No harmonics
- Phases have no sense
- The spectrum can tell us just the density of power at different frequencies.
- => Power spectral density, PSD



#### **PSD** water



# Estimation of PSD directly from signal



#### PSD estimate from signal – water



# Welch's technique – improving the robustness of estimate

Averaging over several segments of signal



#### White noise

- Spectrum of white light is flat
- Power spectral density *G(f)* of a white noise should be also flat.



#### Correlation coefficients of white noise $G(\frac{kF_s}{N}) = DFT\{R[n]\}$

How must *R[k]* look, so that their DFT is a constant ?



#### White noise

- Signal having only *R[0]* non-zero
- ... has no dependencies between samples



# Determining PSD of white noise



 $G(\frac{kF_s}{N}) = \frac{|DFT\{\xi[n]\}|^2}{N}$ 

#### Welch ... help ...



### SUMMARY

- Random signals are of high interest
  - Everywhere around us
  - Carry information
- Discrete vs. continuous range
- Can not precisely define them, other means of description
  - Set of realizations
  - Functions cumulative distribution, probabilities, probability density
  - Scalars moments
  - Behavior between two times correlation coefficients

### SUMMARY II.

- Counts
  - of an event "how many times did you see the water signal in interval 5 to 10?"
- Probabilities
  - Estimated as *count / total*.
- Probability density
  - Estimated as Probability / size of interval (1D or 2D)
- In case we have a set of realizations ensemble estimates.

### SUMMARY III.

- Stationarity behavior not depending on time.
- Ergodicity everything can be estimated from one relazation
  - Temporal estimates
- Spectral analysis
  - Power spectral density PSD
  - From correlation coefficients
  - Or directly from the signal, often improving the estimate by averaging.

### SUMMARY IV

- White noise
  - No dependencies of samples (uncorrelated samples)
  - So that only *R[0]* is non-zero, the others zero.
  - So that DFT is constant
  - White light has constant spectrum too.

### NOT COVERED...

- Can we model generation of random signals
  ?
- What to do for temporal estimates of correlation coefficients – less and less samples to work with as k increases!
- Can we color a white noise ?
- How exactly is power spectral density defined?
- Can we use all this for recognition / classification / detection ?

## The END