Random signals

Honza Černocký, ÚPGM

Signals at school and in the real

 worldDeterministic

- Equation
- Plot
- Algorithm
- Piece of code

Can compute
Little information!

Random

- Don't know for sure
- All different
- Primarily for „nature" and „biological" signals
- Can estimate parameters

Examples

- Speech
- Music
- Video
- Currency exchange rates
- Technical signals (diagnostics)
- Measurements (of anything)
- ... almost everything

Mathematically

- Discrete-time only (samples)
- A system of random variables defined for each n
- For the moment, will look at them independently

Set of realizations

$\xi_{\Omega}[n]$

Ensemble estimates

- Estimate - the estimate will be valid only for this n

According to the range

- Discrete range

$$
\xi[n] \in\left[h_{1}, h_{2}, \ldots, h_{H}\right]
$$

- Coin flipping
- Dice
- Roulette
- Bits from a communication channel
- Real range

$$
\xi[n] \in \mathcal{R}
$$

- Strength of wind
- Audio
- CZK/EUR Exchange rate
- etc

Discrete data

- 50 years of roulette $\Omega=50 \times 365$ realizations
- $N=1000$ games a day

$$
\xi[n] \in\left[h_{1}, h_{2}, \ldots h_{H}\right]=[0,1,2, \ldots, 36]
$$

30	34	10	14	29	35	6	35	33	30	35	30	9	11	11	13	17	22	33	21
33	23	35	0	15	15	17	8	12	23	24	24	26	12	16	21	9	7	14	18
4	4	13	28	15	9	19	29	25	35	22	36	12	34	4	17	31	7	35	15
33	34	6	3	8	29	5	2	10	26	12	32	28	31	36	26	36	5	34	35
23	17	21	28	16	28	1	2	9	36	7	3	3	36	34	28	18	33	14	3
3	34	18	29	12	26	9	23	3	12	9	15	17	0	34	1	6	35	28	24
10	36	9	17	25	30	16	9	2	10	10	9	11	17	10	25	23	23	24	25
20	10	34	12	5	8	20	10	26	9	23	2	7	4	1	30	22	13	4	15
35	19	17	27	14	2	9	4	8	24	16	14	13	13	32	21	27		5	
35	0	33	4	0	33	20	10	1	9	12	0	34	32	1	18	0			
5	5	4	13	27	4	3	33	29	13	20	15	19	6	29	12	22			
35	13	11	30	16	28	0	1	1	4	22	27	21	17	11	28	15			
35	28	15	35	15	35	4	5	17	36	17	30	1	32	27	26				
17	11	14	15	12	33	5	31	15	28	12	35	8	22	33	3	0			
29	20	35	19	14	26	1	31	23	14	1	2	33	17	2	0	14			

Continuous data

- $\Omega=1068$ realizations of flowing water
- Each realization has $20 \mathrm{~ms}, \mathrm{~F}_{\mathrm{s}}=16 \mathrm{kHz}$, so that $\mathrm{N}=320$.

Describing random signal by functions

- CDF (cummulative distribution function)

$$
F(x, n)=\mathcal{P}\{\xi[n]<x\}
$$

- x is nothing random! It is a value, for which we want to determine/measure CDF. For example „which percentage of population is shorter than 165 cm ?" $x=165$

Estimation of probabilities of anything

probability $=\frac{\text { count }}{\text { total }}$

Ladia
VH AHHHHHHIHIHAHIH cof. O. H H
Farz. ${ }^{22}$ It
 kaiva hilt rimpowist

Poc. HH Braió
Socia 0, 1
HHHHHHHHHHHAH

Estimation of CDF from data

$F(x, n)$

$$
\hat{F}(x, n)=\frac{\operatorname{count}\left(\xi_{\omega}[n]<x\right)}{\Omega}
$$

How to divide x axis?

- Sufficiently fine
- But not useful in case the estimate is all the time the same.

How many times was the value smaller than $x=165$?
$P=4 / 10, F(x, n)=0.4$

Estimation roulette

Estimation water

Probabilities of values

- Discrete range - OK

$$
\mathcal{P}\left(X_{i}, n\right)
$$

- The mass of probabilities is

$$
\sum_{\forall i} \mathcal{P}\left(X_{i}, n\right)=1
$$

- Estimation using the counts

$$
\mathcal{P}\left(\hat{X}_{i}, n\right)=\frac{\operatorname{count}\left(X_{i}, n\right)}{\operatorname{total}[n]}
$$

Result for roulette

$\sum_{\forall i} \mathcal{P}\left(X_{i}, n\right)=1$

Continuous range

$$
\mathcal{P}(x, n)=? ? ?
$$

- Nonsense or zero ...
=> Needs probability density!

Real world examples

How many kms did the car run at time t ???

What is the mass of the ferment here, in coordinates x, y, z ???

Velocity

$$
v(t)=\frac{d l(t)}{d t}=\frac{l\left(t_{2}\right)-l\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\Delta l}{\Delta t}
$$

Density
$\rho(x, y, z)=\frac{d m}{d V}=\frac{m\left(x_{1} \ldots x_{2}, y_{1} \ldots y_{2}, z_{1} \ldots z_{2}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)\left(z_{2}-z_{1}\right)}=\frac{\Delta m}{\Delta V}$

Probability density function - PDF

$$
p(x, n)=\frac{d F(x, n)}{d x}
$$

Can we estimate it more easily?

$$
\begin{aligned}
& v(t)=\frac{d l(t)}{d t}=\frac{l\left(t_{2}\right)-l\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{\Delta l}{\Delta t} \\
& \rho(x, y, z)=\frac{d m}{d V}=\frac{m\left(x_{1} \ldots x_{2}, y_{1} \ldots y_{2}, z_{1} \ldots z_{2}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)\left(z_{2}-z_{1}\right)}=\frac{\Delta m}{\Delta V}
\end{aligned}
$$

$$
p(x, n)=\frac{\text { probability }}{\text { normalization }}
$$

Probabilities of values are nonsense, but we can use probabilities of intervals bins!

Histogram

$\operatorname{histogram}(x \in \operatorname{interval}, n)=\operatorname{count}(x \in \operatorname{interval}, n)$

Bins!

Probability

$\mathcal{P}(x \in$ interval,$n)=\frac{\operatorname{count}(x \in \text { interval }, n)}{\Omega}$

Probability density

$$
p(x \in \text { interval }, n)=\frac{\operatorname{count}(x \in \text { interval }, n)}{\Omega \mid \text { interval } \mid}
$$

How about the whole thing ?

$$
\iiint_{V} \rho(x, y, z)=? ?
$$

$$
\int_{x=-\infty}^{+\infty} p(x, n)=1
$$

Check this using the bins ...28

Joint probability or probability density function

- Any relations between samples in different times?
- Are they independent or is there a link?

$$
\begin{aligned}
& \mathcal{P}\left(X_{i}, X_{j}, n_{1}, n_{2}\right) \\
& p\left(x_{i}, x_{j}, n_{1}, n_{2}\right)
\end{aligned}
$$

Good for ?

- Looking for dependencies
- Spectral analysis

Two different times...

Estimations - again questions, now with "and"

Somethi ng at time n_{1} and
 Somethi ng at time n_{2}

joint probability $=\frac{\text { count that something happened simultaneously in } n_{1} \text { AND } n_{2}}{\text { total }}$

Joint counts: $n_{1}=10, n_{2}=11$

Joint probabilities: $\mathrm{n}_{1}=10, \mathrm{n}_{2}=11$

$$
\hat{\mathcal{P}}\left(X_{i}, X_{j}, n_{1}, n_{2}\right)=\frac{\operatorname{count}\left(\xi\left[n_{1}\right]=X_{i} \text { AND } \xi\left[n_{2}\right]=X_{2}\right)}{\Omega}
$$

Joint probabilities: $\mathrm{n}_{1}=10, \mathrm{n}_{2}=10$

$$
\hat{\mathcal{P}}\left(X_{i}, X_{j}, n_{1}, n_{2}\right)=\frac{\operatorname{count}\left(\xi\left[n_{1}\right]=X_{i} \quad \mathbf{A N D} \quad \xi\left[n_{2}\right]=X_{2}\right)}{\Omega}
$$

Joint probabilities: $n_{1}=10, n_{2}=13$

$$
\hat{\mathcal{P}}\left(X_{i}, X_{j}, n_{1}, n_{2}\right)=\frac{\operatorname{count}\left(\xi\left[n_{1}\right]=X_{i} \text { AND } \xi\left[n_{2}\right]=X_{2}\right)}{\Omega}
$$

Continuous range

- Probabilities will not work...

Histogram
=> Probabilities of 2D bins => Probability densities in 2D bins

Joint histogram - counts,

$$
\mathrm{n}_{1}=10, \mathrm{n}_{2}=11
$$

$\operatorname{histogram}\left(x_{1} \in\right.$ interval $_{1}, x_{2} \in$ interval $\left._{2}, n_{1}, n_{2}\right)=\operatorname{count}\left(x_{1} \in\right.$ interval $_{1}, n_{1}$ AND $x_{2} \in$ interval $\left._{2}, n_{2}\right)$

Joint probabilities of bins,

$$
n_{1}=10, n_{2}=11
$$

$\mathcal{P}\left(x_{1} \in\right.$ interval $_{1}, x_{2} \in$ interval $\left._{2}, n_{1}, n_{2}\right)=\frac{\operatorname{count}\left(x_{1} \in \text { interval }_{1}, n_{1} \quad \mathbf{A N D} \quad x_{2} \in \text { interval }_{2}, n_{2}\right)}{\Omega}$

Joint probability density function, $\mathrm{n}_{1}=10, \mathrm{n}_{2}=11$

$p\left(x_{1} \in\right.$ interval $_{1}, x_{2} \in$ interval $\left._{2}, n_{1}, n_{2}\right)=\frac{\operatorname{count}\left(x_{1} \in \text { interval }_{1}, n_{1} \text { AND } x_{2} \in \text { interval }_{2}, n_{2}\right)}{\Omega \mid \text { interval }_{1}| | \text { interval }_{2} \mid}$

Joint probability density function, $\mathrm{n}_{1}=10, \mathrm{n}_{2}=10$

$p\left(x_{1} \in\right.$ interval $_{1}, x_{2} \in$ interval $\left._{2}, n_{1}, n_{2}\right)=\frac{\operatorname{count}\left(x_{1} \in \text { interval }_{1}, n_{1} \text { AND } x_{2} \in \text { interval }_{2}, n_{2}\right)}{\Omega \mid \text { interval }_{1}| | \text { interval }_{2} \mid}$

Joint probability density function, $\mathrm{n}_{1}=10, \mathrm{n}_{2}=16$

$p\left(x_{1} \in\right.$ interval $_{1}, x_{2} \in$ interval $\left._{2}, n_{1}, n_{2}\right)=\frac{\operatorname{count}\left(x_{1} \in \text { interval }_{1}, n_{1} \text { AND } x_{2} \in \text { interval }_{2}, n_{2}\right)}{\Omega \mid \text { interval }_{1}| | \text { interval }_{2} \mid}$

Joint probability density function, $\mathrm{n}_{1}=10, \mathrm{n}_{2}=23$

$p\left(x_{1} \in\right.$ interval $_{1}, x_{2} \in$ interval $\left._{2}, n_{1}, n_{2}\right)=\frac{\operatorname{count}\left(x_{1} \in \text { interval }_{1}, n_{1} \text { AND } x_{2} \in \text { interval }_{2}, n_{2}\right)}{\Omega \mid \text { interval }_{1}| | \text { interval }_{2} \mid}$

Moments

- Single numbers characterizing the random signal.
- Still at time n
- Expectation of something

Expectation $=$ sum $_{\text {all possible values of } x}$ probability of x
times the thing that we're expecting
Sometimes a sum, sometimes an integral.

Mean value

- Expectation of the value

$$
a[n]=E\{\xi[n]\}
$$

Mean value $a[n]=\sum_{\forall X_{i}} \mathcal{P}\left(X_{i}, n\right) X_{i}$ - discrete range

$$
a[10]=18.0422
$$

Mean value
 - continuous range
 $$
a[n]=\int_{x} p(x, n) x d x
$$

$$
a[10]=-0.0073
$$

Variance (dispersion)

- Expectation of zero-mean value squared
- Energy, power ...

$$
D[n]=E\left\{(\xi[n]-a[n])^{2}\right\}
$$

Variance
 $$
D[n]=\sum_{\forall X_{i}} \mathcal{P}\left(X_{i}, n\right)\left(X_{i}-a[n]\right)^{2}
$$ - discrete range

$D[10]=113.8563$

Variance

$$
D[n]=\int_{x} p(x, n)(x-a[n])^{2} d x
$$

- continuous range

$D[10]=0.0183$

Ensemble estimates

You know this from elementary school...

- Discrete range (roulette)
- $\mathrm{n}_{1}=10$

$$
\hat{a}[n]=\frac{1}{\Omega} \sum_{\omega=1}^{\Omega} \xi_{\omega}[n] \quad \hat{\mathrm{a}}[10]=18.0422
$$

$$
\hat{D}[n]=\frac{1}{\Omega} \sum_{\omega=1}^{\Omega}\left(\xi_{\omega}[n]-\hat{a}[n]\right)^{2} \quad \hat{D}[10]=113.8563
$$

You know this from elementary school...

- Continuous range (water)
- $\mathrm{n}_{1}=10$
$\hat{a}[n]=\frac{1}{\Omega} \sum_{\omega=1}^{\Omega} \xi_{\omega}[n] \quad \hat{\mathrm{a}}[10]=-0.0069$
$\hat{D}[n]=\frac{1}{\Omega} \sum_{\omega=1}^{\Omega}\left(\xi_{\omega}[n]-\hat{a}[n]\right)^{2} \quad \hat{\mathrm{D}}[10]=0.0183$
... The equations are the same ©

Correlation coefficient

- Expectation of product of values from two different times

$$
R\left[n_{1}, n_{2}\right]=E\left\{\xi\left[n_{1}\right] \xi\left[n_{2}\right]\right\}
$$

- What does it mean when $R\left[n_{1}, n_{2}\right]$ is
- Big?
- Small or zero?
- Big negative?

Discrete range, $n_{1}=10, n_{1}=11$

 $R\left[n_{1}, n_{2}\right]=\sum_{\forall X_{1}} \sum_{\forall X_{2}} \mathcal{P}\left(X_{1}, X_{2}, n_{1}, n_{2}\right) X_{1} X_{2}$

$R[10,11]=324.2020$

Discrete range, $n_{1}=10, n_{2}=10$ $R\left[n_{1}, n_{2}\right]=\sum_{\forall X_{1}} \sum_{\forall X_{2}} \mathcal{P}\left(X_{1}, X_{2}, n_{1}, n_{2}\right) X_{1} X_{2}$

$X_{1} X_{2} P\left(X_{1}, X_{2}, n_{1}, n_{2}\right)$

$R[10,10]=439.3770$

Discrete range, $n_{1}=10, n_{2}=13$

 $R\left[n_{1}, n_{2}\right]=\sum_{\forall X_{1}} \sum_{\forall X_{2}} \mathcal{P}\left(X_{1}, X_{2}, n_{1}, n_{2}\right) X_{1} X_{2}$

$\mathrm{R}[10,13]=326.9284$

Continuous range, $n_{1}=10, n_{2}=11$

$\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{n}_{1}, \mathrm{n}_{2}\right)$

$\mathrm{R}[10,11]=0.0159$

Continuous range, $n_{1}=10, n_{2}=10$

$$
R\left[n_{1}, n_{2}\right]=\int_{x_{1}} \int_{x_{2}} p\left(x_{1}, x_{2}, n_{1}, n_{2}\right) x_{1} x_{2} d x_{1} d x_{2}
$$

$\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{n}_{1}, \mathrm{n}_{2}\right)$

$R[10,10]=0.0184$

Continuous range, $n_{1}=10, n_{2}=16$

$$
R\left[n_{1}, n_{2}\right]=\int_{x_{1}} \int_{x_{2}} p\left(x_{1}, x_{2}, n_{1}, n_{2}\right) x_{1} x_{2} d x_{1} d x_{2}
$$

$x_{1} x_{2} p\left(x_{1}, x_{2}, n_{1}, n_{2}\right)$

Continuous range, $n_{1}=10, n_{2}=23$

$$
R\left[n_{1}, n_{2}\right]=\int_{x_{1}} \int_{x_{2}} p\left(x_{1}, x_{2}, n_{1}, n_{2}\right) x_{1} x_{2} d x x_{1} d x_{2}
$$

$R[10,23]=-0.0139$

Direct ensemble estimate

> Discrete range
> $\hat{R}\left[n_{1}, n_{2}\right]=\frac{1}{\Omega} \sum_{\omega=1}^{\Omega} \xi_{\omega}\left[n_{1}\right] \xi_{\omega}\left[n_{2}\right]$
$R[10,10]=439.3770$
$R[10,11]=324.2020$
$R[10,13]=326.9284$

Continuous range

$\hat{R}\left[n_{1}, n_{2}\right]=\frac{1}{\Omega} \sum_{\omega=1}^{\Omega} \xi_{\omega}\left[n_{1}\right] \xi_{\omega}\left[n_{2}\right]$
$R[10,10]=0.0183$
$R[10,11]=0.0160$
$R[10,16]=3.8000 \mathrm{e}-04$
$R[10,23]=-0.0140$

The same equations again $)^{-}$

Sequence of correlation coefficients - roulette

Sequence of correlation coefficients - water

Stationarity

- The behavior of stationary random signal does not change over time (or at least we believe that it does not...)
- Values and functions independent on time n
- Correlation coefficients do not depende on n_{1} and n_{2}, only on their difference $k=n_{2}-n_{1}$

$$
\begin{aligned}
F(x, n) \rightarrow F(x) & p(x, n) \rightarrow p(x) \\
a[n] \rightarrow a \quad D[n] & \rightarrow D \quad \sigma[n] \rightarrow \sigma \\
p\left(x_{1}, x_{2}, n_{1}, n_{2}\right) & \rightarrow p\left(x_{1}, x_{2}, k\right) \\
R\left[n_{1}, n_{2}\right] & \rightarrow R(k)
\end{aligned}
$$

Is roulette stationary?

Is water stationary ?

Ergodicity

- The parameters can be estimated from one single realization
... or at least we hope
... most of the time, we'll have to do it anyway

$$
\Rightarrow \quad \xi[n]
$$

Temporal estimates

$$
\hat{a}=\frac{1}{N} \sum_{n=0}^{N-1} \xi[n] \quad \hat{D}=\frac{1}{N} \sum_{n=0}^{N-1}[\xi[n]-\hat{a}]^{2} \quad \hat{\sigma}=\sqrt{\hat{D}}
$$

$$
\hat{R}[k]=\frac{1}{N} \sum_{n=0}^{N-1} \xi[n] \xi[n+k]
$$

Roulette

$$
\begin{aligned}
& a=18.0348 \\
& D=114.4742
\end{aligned}
$$

$\mathrm{R}[\mathrm{k}]$

Water

$a=-0.0035$
 $D=0.0168$

$\mathrm{R}[\mathrm{k}]$

Temporal estimates of joint probabilities ?
 $\hat{\mathcal{P}}\left(X_{i}, X_{j}, k\right)=\frac{\operatorname{count}\left(\xi[n]=X_{1} \text { AND } \xi[n+k]=X_{2}\right)}{N}$

Roulette,

$$
k=1
$$

Roulette,

$$
k=3
$$

Spectral analysis of random signals

- No idea on which frequencies they are
- No fundamental frequency
- No harmonics
- Phases have no sense
- The spectrum can tell us just the density of power at different frequencies.
=> Power spectral density, PSD

Computing PSD from correlation coefficients

PSD water

Estimation of PSD directly from signal

PSD estimate from signal - water

Welch's technique - improving the robustness of estimate

- Averaging over several segments of signal

White noise

- Spectrum of white light is flat
- Power spectral density $G(f)$ of a white noise should be also flat.
$G(f)$

Correlation coefficients of white

 noise$$
G\left(\frac{k F_{s}}{N}\right)=\operatorname{DFT}\{R[n]\}
$$

- How must $R[k]$ look, so that their DFT is a constant?

R[k]

White noise

- Signal having only R[0] non-zero
- ... has no dependencies between samples

Determining PSD of white noise

$$
G\left(\frac{k F_{s}}{N}\right)=\frac{|D F T\{\xi[n]\}|^{2}}{N}
$$

Welch ... help ...

SUMMARY

- Random signals are of high interest
- Everywhere around us
- Carry information
- Discrete vs. continuous range
- Can not precisely define them, other means of description
- Set of realizations
- Functions - cumulative distribution, probabilities, probability density
- Scalars - moments
- Behavior between two times - correlation coefficients

SUMMARY II.

- Counts
- of an event „how many times did you see the water signal in interval 5 to 10?"
- Probabilities
- Estimated as count / total.
- Probability density
- Estimated as Probability / size of interval (1D or 2D)
- In case we have a set of realizations ensemble estimates.

SUMMARY III.

- Stationarity - behavior not depending on time.
- Ergodicity - everything can be estimated from one relazation
- Temporal estimates
- Spectral analysis
- Power spectral density - PSD
- From correlation coefficients
- Or directly from the signal, often improving the estimate by averaging.

SUMMARY IV

- White noise
- No dependencies of samples (uncorrelated samples)
- So that only $R[0]$ is non-zero, the others zero.
- So that DFT is constant
- White light has constant spectrum too.

NOT COVERED...

- Can we model generation of random signals ?
- What to do for temporal estimates of correlation coefficients - less and less samples to work with as k increases!
- Can we color a white noise ?
- How exactly is power spectral density defined?
- Can we use all this for recognition / classification / detection?

The END

