Half-semester exam ISS, 23.10.2008, English, group A

Login: \qquad Signature: \qquad

Exercise 1 The signal is the CZK/EUR exchange rate at the end of every working day.
The signal is:

A	B	C	D
deterministic	random	deterministic	random discrete time
discrete time	continuous time	continuous time	

Exercise 2 Signal $x(t)$ is defined as

$$
x(t)= \begin{cases}1-t^{2} & \text { for } t \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

The figure:

shows signal:

$$
\begin{array}{c|c|c|c}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
x(-t-1) & x(-t+1) & -x(-t-1) & -x(-t+1)
\end{array}
$$

Exercise 3 The phase of harmonic signal, defined using a delay: $x(t)=45 \cos \left[\frac{1}{16} \pi(t-0.4)\right]$ is

$$
\begin{array}{c|c|c|c}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
\phi_{1}=-0.0393 \mathrm{rad} & \phi_{1}=-0.0785 \mathrm{rad} & \phi_{1}=-0.0982 \mathrm{rad} & \phi_{1}=-0.1178 \mathrm{rad}
\end{array}
$$

Exercise 4

The figure shows discrete cosine $x[n]=$

$$
\begin{array}{c|c|c|c}
\text { A } & \text { B } & \text { C } & \text { D } \\
12 \cos \left(0.7854 n+\frac{\pi}{2}\right) & 12 \cos \left(0.3927 n+\frac{\pi}{2}\right) & 12 \cos \left(0.7854 n-\frac{\pi}{2}\right) & 12 \cos \left(0.3927 n-\frac{\pi}{2}\right)
\end{array}
$$

Exercise 5 Periodic continuous time signal is defined as a series of parabolas interleaved by intervals of zeros (attention, it is not a rectified cosine!):

$$
x(t)=\left\{\begin{array}{ll}
1-t^{2} & \text { for } t \in[-1,1] \\
0 & \text { for } t \in[-2,-1]
\end{array} \quad \text { a } t \in[1,2] \quad \text { with period } T_{1}=4\right.
$$

The average value of the signal is

$$
\begin{array}{c|c|c|c}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
\bar{x}=0.3333 & \bar{x}=0.2725 & \bar{x}=0.5 & \bar{x}=0.5644
\end{array}
$$

Exercise 6 The average power of the signal from Exercise 5 is

$$
\begin{array}{c|c|c|c}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
P_{s}=0.1855 & P_{s}=0.2 & P_{s}=0.2667 & P_{s}=0.3816
\end{array}
$$

Exercise 7 Signal $x_{1}(t)$ is non-zero in interval $t \in[0,2]$ and signal $x_{2}(t)$ is non-zero in interval $t \in[0,3]$.
Dteremine, in which interval their convolution $y(t)=x_{1}(t) \star x_{2}(t)$ will be non-zero:

$$
\begin{array}{c|c|c|c}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
t \in[-\infty,+\infty] & t \in[0,3] & t \in[0,5] & t \in[0,6]
\end{array}
$$

Exercise 8 For $n=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right]$, the folowing discrete signals are given:
$x_{1}[n]=\left[\begin{array}{lllll}5 & 3 & 0 & 0 & 0\end{array}\right]$ and $x_{2}[n]=\left[\begin{array}{ccccc}-1 & 1 & 0 & 0 & 0\end{array}\right]$
The result of their convolution $y[n]=x_{1}[n] \star x_{2}[n]$, for $n=\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right]$, is signal $y[n]=$
$\left.\left.\left.\left[\begin{array}{lllll}{[-5} & 3 & 2 & 0 & 0\end{array} \left\lvert\, \begin{array}{lllll}{[5} & -3 & -2 & 0 & 0\end{array}\right.\right] \right\rvert\, \begin{array}{lllll}{[-5} & 2 & 3 & 0 & 0\end{array}\right] \left\lvert\, \begin{array}{llllll}{[5} & -2 & -3 & 0 & 0\end{array}\right.\right]$

Exercise 9 A discrete system has an impulse reponse $h[n]$, that is non-zero only for $n \leq 0$ The system is:

A	B	C	D
causal	non-causal	on the boundary of causality	can not determine

Exercise 10 The periodic signal from Exercise 5 will have the following coefficients of Fourier series:

A	B	C	D
positive c_{0}	zero c_{0}	positive c_{0}	zero c_{0}
non-zero only	non-zero c_{k} for	non-zero only	non-zero c_{k} for
c_{1}, c_{-1}	$k \in[1,+\infty)$	c_{1}, c_{-1}	$k \in[1,+\infty)$
zero c_{k} for $\|k\|>1$	and $k \in(-\infty,-1]$	zero c_{k} for $\|k\|>1$	and $k \in(-\infty,-1]$

